L(s) = 1 | + 1.70·2-s − 3·3-s − 5.10·4-s − 5.10·6-s − 7·7-s − 22.2·8-s + 9·9-s + 37.4·11-s + 15.3·12-s − 29.0·13-s − 11.9·14-s + 2.89·16-s − 58.4·17-s + 15.3·18-s − 54.5·19-s + 21·21-s + 63.6·22-s − 161.·23-s + 66.8·24-s − 49.3·26-s − 27·27-s + 35.7·28-s + 137.·29-s + 154.·31-s + 183.·32-s − 112.·33-s − 99.4·34-s + ⋯ |
L(s) = 1 | + 0.601·2-s − 0.577·3-s − 0.638·4-s − 0.347·6-s − 0.377·7-s − 0.985·8-s + 0.333·9-s + 1.02·11-s + 0.368·12-s − 0.619·13-s − 0.227·14-s + 0.0452·16-s − 0.833·17-s + 0.200·18-s − 0.659·19-s + 0.218·21-s + 0.616·22-s − 1.46·23-s + 0.568·24-s − 0.372·26-s − 0.192·27-s + 0.241·28-s + 0.880·29-s + 0.896·31-s + 1.01·32-s − 0.591·33-s − 0.501·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.342163959\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.342163959\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 7T \) |
good | 2 | \( 1 - 1.70T + 8T^{2} \) |
| 11 | \( 1 - 37.4T + 1.33e3T^{2} \) |
| 13 | \( 1 + 29.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + 58.4T + 4.91e3T^{2} \) |
| 19 | \( 1 + 54.5T + 6.85e3T^{2} \) |
| 23 | \( 1 + 161.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 137.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 154.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 350.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 353.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 518.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 542.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 305.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 14.6T + 2.05e5T^{2} \) |
| 61 | \( 1 + 171.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 551.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 120.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 284.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 941.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 377.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 677.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.22e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44952857988875015793601439060, −9.540365068206106608860730546166, −8.873951856178545941469969180437, −7.66450475351796549017430363913, −6.34581754091404579682857301941, −5.94609151761960009021876136681, −4.47848582870770620047149031389, −4.13752717693359713465153361429, −2.55337736460355621813102975690, −0.66253792770971114502580459844,
0.66253792770971114502580459844, 2.55337736460355621813102975690, 4.13752717693359713465153361429, 4.47848582870770620047149031389, 5.94609151761960009021876136681, 6.34581754091404579682857301941, 7.66450475351796549017430363913, 8.873951856178545941469969180437, 9.540365068206106608860730546166, 10.44952857988875015793601439060