Properties

Label 2-525-1.1-c3-0-31
Degree $2$
Conductor $525$
Sign $1$
Analytic cond. $30.9760$
Root an. cond. $5.56560$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.27·2-s − 3·3-s + 19.8·4-s − 15.8·6-s − 7·7-s + 62.3·8-s + 9·9-s + 34.7·11-s − 59.4·12-s + 37.2·13-s − 36.9·14-s + 170.·16-s + 10.5·17-s + 47.4·18-s − 58.5·19-s + 21·21-s + 183.·22-s + 125.·23-s − 187.·24-s + 196.·26-s − 27·27-s − 138.·28-s − 35.4·29-s + 291.·31-s + 399.·32-s − 104.·33-s + 55.6·34-s + ⋯
L(s)  = 1  + 1.86·2-s − 0.577·3-s + 2.47·4-s − 1.07·6-s − 0.377·7-s + 2.75·8-s + 0.333·9-s + 0.952·11-s − 1.43·12-s + 0.795·13-s − 0.704·14-s + 2.66·16-s + 0.150·17-s + 0.621·18-s − 0.707·19-s + 0.218·21-s + 1.77·22-s + 1.13·23-s − 1.59·24-s + 1.48·26-s − 0.192·27-s − 0.936·28-s − 0.226·29-s + 1.69·31-s + 2.20·32-s − 0.549·33-s + 0.280·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(30.9760\)
Root analytic conductor: \(5.56560\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.798605878\)
\(L(\frac12)\) \(\approx\) \(5.798605878\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 5.27T + 8T^{2} \)
11 \( 1 - 34.7T + 1.33e3T^{2} \)
13 \( 1 - 37.2T + 2.19e3T^{2} \)
17 \( 1 - 10.5T + 4.91e3T^{2} \)
19 \( 1 + 58.5T + 6.85e3T^{2} \)
23 \( 1 - 125.T + 1.21e4T^{2} \)
29 \( 1 + 35.4T + 2.43e4T^{2} \)
31 \( 1 - 291.T + 2.97e4T^{2} \)
37 \( 1 - 259.T + 5.06e4T^{2} \)
41 \( 1 + 338.T + 6.89e4T^{2} \)
43 \( 1 + 6.80T + 7.95e4T^{2} \)
47 \( 1 + 250.T + 1.03e5T^{2} \)
53 \( 1 - 536.T + 1.48e5T^{2} \)
59 \( 1 + 35.8T + 2.05e5T^{2} \)
61 \( 1 - 57.7T + 2.26e5T^{2} \)
67 \( 1 + 481.T + 3.00e5T^{2} \)
71 \( 1 - 363.T + 3.57e5T^{2} \)
73 \( 1 + 581.T + 3.89e5T^{2} \)
79 \( 1 + 693.T + 4.93e5T^{2} \)
83 \( 1 + 1.33e3T + 5.71e5T^{2} \)
89 \( 1 + 353.T + 7.04e5T^{2} \)
97 \( 1 + 1.44e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92538593604898412146976676843, −9.941223765484648832108103082320, −8.533857991098448212242140263991, −7.07911157728994119565938410288, −6.45071386636747692698844692531, −5.77831203483640094512377103840, −4.67939615339343324894738144429, −3.90878278724342875436975416989, −2.85471925421246258284576604243, −1.32371739493209049092897499578, 1.32371739493209049092897499578, 2.85471925421246258284576604243, 3.90878278724342875436975416989, 4.67939615339343324894738144429, 5.77831203483640094512377103840, 6.45071386636747692698844692531, 7.07911157728994119565938410288, 8.533857991098448212242140263991, 9.941223765484648832108103082320, 10.92538593604898412146976676843

Graph of the $Z$-function along the critical line