Properties

Label 2-525-1.1-c1-0-17
Degree $2$
Conductor $525$
Sign $1$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·2-s + 3-s + 4.85·4-s + 2.61·6-s − 7-s + 7.47·8-s + 9-s − 5.47·11-s + 4.85·12-s + 0.763·13-s − 2.61·14-s + 9.85·16-s − 7.70·17-s + 2.61·18-s − 3.23·19-s − 21-s − 14.3·22-s + 5·23-s + 7.47·24-s + 2·26-s + 27-s − 4.85·28-s + 4.70·29-s + 4.47·31-s + 10.8·32-s − 5.47·33-s − 20.1·34-s + ⋯
L(s)  = 1  + 1.85·2-s + 0.577·3-s + 2.42·4-s + 1.06·6-s − 0.377·7-s + 2.64·8-s + 0.333·9-s − 1.64·11-s + 1.40·12-s + 0.211·13-s − 0.699·14-s + 2.46·16-s − 1.86·17-s + 0.617·18-s − 0.742·19-s − 0.218·21-s − 3.05·22-s + 1.04·23-s + 1.52·24-s + 0.392·26-s + 0.192·27-s − 0.917·28-s + 0.874·29-s + 0.803·31-s + 1.91·32-s − 0.952·33-s − 3.46·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.472028629\)
\(L(\frac12)\) \(\approx\) \(4.472028629\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 - 2.61T + 2T^{2} \)
11 \( 1 + 5.47T + 11T^{2} \)
13 \( 1 - 0.763T + 13T^{2} \)
17 \( 1 + 7.70T + 17T^{2} \)
19 \( 1 + 3.23T + 19T^{2} \)
23 \( 1 - 5T + 23T^{2} \)
29 \( 1 - 4.70T + 29T^{2} \)
31 \( 1 - 4.47T + 31T^{2} \)
37 \( 1 - 5.47T + 37T^{2} \)
41 \( 1 + 8T + 41T^{2} \)
43 \( 1 - 8.23T + 43T^{2} \)
47 \( 1 - 7.23T + 47T^{2} \)
53 \( 1 - 0.472T + 53T^{2} \)
59 \( 1 + 0.763T + 59T^{2} \)
61 \( 1 + 15.4T + 61T^{2} \)
67 \( 1 + 2.70T + 67T^{2} \)
71 \( 1 + 0.527T + 71T^{2} \)
73 \( 1 - 1.23T + 73T^{2} \)
79 \( 1 - 1.76T + 79T^{2} \)
83 \( 1 - 12.4T + 83T^{2} \)
89 \( 1 + 5.70T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88305000630002915801675779947, −10.51598250423239454545138722393, −8.994117574786019984819193779230, −7.894209300014456103447531603063, −6.89146884514217468798889316367, −6.13063408322345187956609937524, −4.93981419341911702196571857375, −4.27364598256038389131842168876, −2.95196754636197338202645198661, −2.34586971382930296741322120989, 2.34586971382930296741322120989, 2.95196754636197338202645198661, 4.27364598256038389131842168876, 4.93981419341911702196571857375, 6.13063408322345187956609937524, 6.89146884514217468798889316367, 7.894209300014456103447531603063, 8.994117574786019984819193779230, 10.51598250423239454545138722393, 10.88305000630002915801675779947

Graph of the $Z$-function along the critical line