L(s) = 1 | − 2.58·2-s − 1.69·3-s + 4.68·4-s + 4.38·6-s − 2.28·7-s − 6.95·8-s − 0.129·9-s + 11-s − 7.94·12-s + 1.76·13-s + 5.91·14-s + 8.60·16-s + 7.54·17-s + 0.333·18-s − 19-s + 3.87·21-s − 2.58·22-s + 6.89·23-s + 11.7·24-s − 4.56·26-s + 5.30·27-s − 10.7·28-s + 6.12·29-s + 8.39·31-s − 8.34·32-s − 1.69·33-s − 19.5·34-s + ⋯ |
L(s) = 1 | − 1.82·2-s − 0.978·3-s + 2.34·4-s + 1.78·6-s − 0.864·7-s − 2.45·8-s − 0.0430·9-s + 0.301·11-s − 2.29·12-s + 0.489·13-s + 1.58·14-s + 2.15·16-s + 1.83·17-s + 0.0787·18-s − 0.229·19-s + 0.846·21-s − 0.551·22-s + 1.43·23-s + 2.40·24-s − 0.894·26-s + 1.02·27-s − 2.02·28-s + 1.13·29-s + 1.50·31-s − 1.47·32-s − 0.294·33-s − 3.34·34-s + ⋯ |
Λ(s)=(=(5225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5930522033 |
L(21) |
≈ |
0.5930522033 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1−T |
| 19 | 1+T |
good | 2 | 1+2.58T+2T2 |
| 3 | 1+1.69T+3T2 |
| 7 | 1+2.28T+7T2 |
| 13 | 1−1.76T+13T2 |
| 17 | 1−7.54T+17T2 |
| 23 | 1−6.89T+23T2 |
| 29 | 1−6.12T+29T2 |
| 31 | 1−8.39T+31T2 |
| 37 | 1−10.1T+37T2 |
| 41 | 1−4.07T+41T2 |
| 43 | 1−5.51T+43T2 |
| 47 | 1+11.6T+47T2 |
| 53 | 1+12.7T+53T2 |
| 59 | 1−13.5T+59T2 |
| 61 | 1−5.89T+61T2 |
| 67 | 1−8.79T+67T2 |
| 71 | 1+9.61T+71T2 |
| 73 | 1+8.70T+73T2 |
| 79 | 1−4.40T+79T2 |
| 83 | 1+0.146T+83T2 |
| 89 | 1+1.54T+89T2 |
| 97 | 1−7.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.254281641584486756833128853181, −7.66770571685439936105040872873, −6.69530401333914072316302565304, −6.37470430721832913284404163632, −5.74436056248877882741328615991, −4.71150173019947864796644406494, −3.25932753888294332064947660479, −2.70857259941319415596866916510, −1.15308681206483535667537183174, −0.71538213076460783716251036149,
0.71538213076460783716251036149, 1.15308681206483535667537183174, 2.70857259941319415596866916510, 3.25932753888294332064947660479, 4.71150173019947864796644406494, 5.74436056248877882741328615991, 6.37470430721832913284404163632, 6.69530401333914072316302565304, 7.66770571685439936105040872873, 8.254281641584486756833128853181