Properties

Label 2-5225-1.1-c1-0-238
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.39·2-s + 2.59·3-s + 3.74·4-s + 6.22·6-s + 2.89·7-s + 4.19·8-s + 3.73·9-s − 11-s + 9.72·12-s − 4.73·13-s + 6.93·14-s + 2.56·16-s + 5.65·17-s + 8.94·18-s + 19-s + 7.50·21-s − 2.39·22-s + 4.00·23-s + 10.8·24-s − 11.3·26-s + 1.89·27-s + 10.8·28-s + 9.32·29-s − 6.60·31-s − 2.24·32-s − 2.59·33-s + 13.5·34-s + ⋯
L(s)  = 1  + 1.69·2-s + 1.49·3-s + 1.87·4-s + 2.53·6-s + 1.09·7-s + 1.48·8-s + 1.24·9-s − 0.301·11-s + 2.80·12-s − 1.31·13-s + 1.85·14-s + 0.640·16-s + 1.37·17-s + 2.10·18-s + 0.229·19-s + 1.63·21-s − 0.511·22-s + 0.835·23-s + 2.22·24-s − 2.22·26-s + 0.364·27-s + 2.05·28-s + 1.73·29-s − 1.18·31-s − 0.397·32-s − 0.451·33-s + 2.32·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(10.42815971\)
\(L(\frac12)\) \(\approx\) \(10.42815971\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 2.39T + 2T^{2} \)
3 \( 1 - 2.59T + 3T^{2} \)
7 \( 1 - 2.89T + 7T^{2} \)
13 \( 1 + 4.73T + 13T^{2} \)
17 \( 1 - 5.65T + 17T^{2} \)
23 \( 1 - 4.00T + 23T^{2} \)
29 \( 1 - 9.32T + 29T^{2} \)
31 \( 1 + 6.60T + 31T^{2} \)
37 \( 1 + 6.07T + 37T^{2} \)
41 \( 1 - 5.47T + 41T^{2} \)
43 \( 1 + 10.9T + 43T^{2} \)
47 \( 1 - 0.295T + 47T^{2} \)
53 \( 1 - 3.81T + 53T^{2} \)
59 \( 1 + 5.54T + 59T^{2} \)
61 \( 1 + 1.01T + 61T^{2} \)
67 \( 1 + 6.98T + 67T^{2} \)
71 \( 1 + 1.02T + 71T^{2} \)
73 \( 1 - 0.202T + 73T^{2} \)
79 \( 1 - 7.28T + 79T^{2} \)
83 \( 1 - 13.7T + 83T^{2} \)
89 \( 1 + 15.8T + 89T^{2} \)
97 \( 1 + 4.81T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.996512150494119901654696473393, −7.43574461733056969807525221316, −6.89928140921634323473122548618, −5.70160308885606147837495970503, −4.98641940132444261464107191974, −4.62328194264813800495104990636, −3.56614508186414688229564416770, −3.04332408356760486705739761049, −2.35300601581367010116665016500, −1.52393642980524284788488872558, 1.52393642980524284788488872558, 2.35300601581367010116665016500, 3.04332408356760486705739761049, 3.56614508186414688229564416770, 4.62328194264813800495104990636, 4.98641940132444261464107191974, 5.70160308885606147837495970503, 6.89928140921634323473122548618, 7.43574461733056969807525221316, 7.996512150494119901654696473393

Graph of the $Z$-function along the critical line