L(s) = 1 | − 0.814·2-s + 2.50·3-s − 1.33·4-s − 2.03·6-s + 4.83·7-s + 2.71·8-s + 3.25·9-s − 11-s − 3.34·12-s + 4.12·13-s − 3.94·14-s + 0.459·16-s − 2.02·17-s − 2.64·18-s + 19-s + 12.0·21-s + 0.814·22-s − 6.38·23-s + 6.79·24-s − 3.35·26-s + 0.626·27-s − 6.46·28-s + 7.42·29-s − 4.40·31-s − 5.80·32-s − 2.50·33-s + 1.65·34-s + ⋯ |
L(s) = 1 | − 0.575·2-s + 1.44·3-s − 0.668·4-s − 0.831·6-s + 1.82·7-s + 0.960·8-s + 1.08·9-s − 0.301·11-s − 0.964·12-s + 1.14·13-s − 1.05·14-s + 0.114·16-s − 0.491·17-s − 0.624·18-s + 0.229·19-s + 2.64·21-s + 0.173·22-s − 1.33·23-s + 1.38·24-s − 0.658·26-s + 0.120·27-s − 1.22·28-s + 1.37·29-s − 0.791·31-s − 1.02·32-s − 0.435·33-s + 0.283·34-s + ⋯ |
Λ(s)=(=(5225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.829355043 |
L(21) |
≈ |
2.829355043 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+T |
| 19 | 1−T |
good | 2 | 1+0.814T+2T2 |
| 3 | 1−2.50T+3T2 |
| 7 | 1−4.83T+7T2 |
| 13 | 1−4.12T+13T2 |
| 17 | 1+2.02T+17T2 |
| 23 | 1+6.38T+23T2 |
| 29 | 1−7.42T+29T2 |
| 31 | 1+4.40T+31T2 |
| 37 | 1+1.77T+37T2 |
| 41 | 1−9.92T+41T2 |
| 43 | 1−9.89T+43T2 |
| 47 | 1+0.145T+47T2 |
| 53 | 1−12.9T+53T2 |
| 59 | 1−1.17T+59T2 |
| 61 | 1−2.03T+61T2 |
| 67 | 1+7.84T+67T2 |
| 71 | 1+11.1T+71T2 |
| 73 | 1−3.27T+73T2 |
| 79 | 1−11.3T+79T2 |
| 83 | 1+2.37T+83T2 |
| 89 | 1+9.26T+89T2 |
| 97 | 1+8.29T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.389559620063854657158146603372, −7.73397697735631548680163721061, −7.39941526449405982883314854952, −5.97650476619527079419425321649, −5.14988507173245207051569318239, −4.16830971656777077253310052524, −3.98210941745065109065857284253, −2.61785980887038576160409116741, −1.84200598797527007065576960172, −1.01813688135207007702235205849,
1.01813688135207007702235205849, 1.84200598797527007065576960172, 2.61785980887038576160409116741, 3.98210941745065109065857284253, 4.16830971656777077253310052524, 5.14988507173245207051569318239, 5.97650476619527079419425321649, 7.39941526449405982883314854952, 7.73397697735631548680163721061, 8.389559620063854657158146603372