Properties

Label 2-5225-1.1-c1-0-141
Degree $2$
Conductor $5225$
Sign $-1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70·2-s + 0.205·3-s + 5.31·4-s − 0.555·6-s − 2.55·7-s − 8.95·8-s − 2.95·9-s − 11-s + 1.09·12-s − 0.727·13-s + 6.90·14-s + 13.5·16-s + 4.75·17-s + 7.99·18-s + 19-s − 0.523·21-s + 2.70·22-s − 5.27·23-s − 1.83·24-s + 1.96·26-s − 1.22·27-s − 13.5·28-s + 6.31·29-s + 2.60·31-s − 18.8·32-s − 0.205·33-s − 12.8·34-s + ⋯
L(s)  = 1  − 1.91·2-s + 0.118·3-s + 2.65·4-s − 0.226·6-s − 0.964·7-s − 3.16·8-s − 0.985·9-s − 0.301·11-s + 0.314·12-s − 0.201·13-s + 1.84·14-s + 3.39·16-s + 1.15·17-s + 1.88·18-s + 0.229·19-s − 0.114·21-s + 0.576·22-s − 1.09·23-s − 0.375·24-s + 0.385·26-s − 0.235·27-s − 2.56·28-s + 1.17·29-s + 0.467·31-s − 3.33·32-s − 0.0357·33-s − 2.20·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 2.70T + 2T^{2} \)
3 \( 1 - 0.205T + 3T^{2} \)
7 \( 1 + 2.55T + 7T^{2} \)
13 \( 1 + 0.727T + 13T^{2} \)
17 \( 1 - 4.75T + 17T^{2} \)
23 \( 1 + 5.27T + 23T^{2} \)
29 \( 1 - 6.31T + 29T^{2} \)
31 \( 1 - 2.60T + 31T^{2} \)
37 \( 1 + 7.54T + 37T^{2} \)
41 \( 1 - 6.59T + 41T^{2} \)
43 \( 1 + 0.578T + 43T^{2} \)
47 \( 1 - 5.00T + 47T^{2} \)
53 \( 1 + 5.82T + 53T^{2} \)
59 \( 1 - 8.71T + 59T^{2} \)
61 \( 1 - 10.3T + 61T^{2} \)
67 \( 1 + 6.24T + 67T^{2} \)
71 \( 1 - 9.50T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 + 13.9T + 79T^{2} \)
83 \( 1 - 8.52T + 83T^{2} \)
89 \( 1 + 13.9T + 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.070398661114127615377608519652, −7.39843528058669559711124318007, −6.60694443233227980901564196922, −6.03921030130057258363974234409, −5.30911303895964068280225525460, −3.64365764133469213862036991898, −2.89873325125029541981637100318, −2.26222089836759792475795270645, −0.980453479666625752880055920239, 0, 0.980453479666625752880055920239, 2.26222089836759792475795270645, 2.89873325125029541981637100318, 3.64365764133469213862036991898, 5.30911303895964068280225525460, 6.03921030130057258363974234409, 6.60694443233227980901564196922, 7.39843528058669559711124318007, 8.070398661114127615377608519652

Graph of the $Z$-function along the critical line