Properties

Label 2-5225-1.1-c1-0-139
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.59·2-s − 2.99·3-s + 4.71·4-s − 7.75·6-s + 1.08·7-s + 7.02·8-s + 5.96·9-s + 11-s − 14.1·12-s + 3.56·13-s + 2.81·14-s + 8.76·16-s − 2.11·17-s + 15.4·18-s − 19-s − 3.25·21-s + 2.59·22-s + 4.81·23-s − 21.0·24-s + 9.23·26-s − 8.88·27-s + 5.11·28-s − 3.35·29-s + 4.72·31-s + 8.66·32-s − 2.99·33-s − 5.46·34-s + ⋯
L(s)  = 1  + 1.83·2-s − 1.72·3-s + 2.35·4-s − 3.16·6-s + 0.410·7-s + 2.48·8-s + 1.98·9-s + 0.301·11-s − 4.07·12-s + 0.989·13-s + 0.751·14-s + 2.19·16-s − 0.512·17-s + 3.64·18-s − 0.229·19-s − 0.709·21-s + 0.552·22-s + 1.00·23-s − 4.29·24-s + 1.81·26-s − 1.70·27-s + 0.966·28-s − 0.622·29-s + 0.849·31-s + 1.53·32-s − 0.521·33-s − 0.938·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.267779472\)
\(L(\frac12)\) \(\approx\) \(4.267779472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 - 2.59T + 2T^{2} \)
3 \( 1 + 2.99T + 3T^{2} \)
7 \( 1 - 1.08T + 7T^{2} \)
13 \( 1 - 3.56T + 13T^{2} \)
17 \( 1 + 2.11T + 17T^{2} \)
23 \( 1 - 4.81T + 23T^{2} \)
29 \( 1 + 3.35T + 29T^{2} \)
31 \( 1 - 4.72T + 31T^{2} \)
37 \( 1 - 5.10T + 37T^{2} \)
41 \( 1 + 8.37T + 41T^{2} \)
43 \( 1 - 7.95T + 43T^{2} \)
47 \( 1 - 1.41T + 47T^{2} \)
53 \( 1 - 9.64T + 53T^{2} \)
59 \( 1 + 0.737T + 59T^{2} \)
61 \( 1 + 5.70T + 61T^{2} \)
67 \( 1 + 2.12T + 67T^{2} \)
71 \( 1 - 10.6T + 71T^{2} \)
73 \( 1 - 11.0T + 73T^{2} \)
79 \( 1 + 9.96T + 79T^{2} \)
83 \( 1 + 14.0T + 83T^{2} \)
89 \( 1 - 9.82T + 89T^{2} \)
97 \( 1 - 8.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76361465397836950867888115551, −6.84416476026100649844370003329, −6.54536027261380361087514595566, −5.79875517193705442800454262411, −5.36005168200134442503939957869, −4.55342826629033396377887672221, −4.17471381599132825282035207257, −3.18813299851725141964472235129, −1.96262923767217864928000990887, −0.977143253589717740937039333557, 0.977143253589717740937039333557, 1.96262923767217864928000990887, 3.18813299851725141964472235129, 4.17471381599132825282035207257, 4.55342826629033396377887672221, 5.36005168200134442503939957869, 5.79875517193705442800454262411, 6.54536027261380361087514595566, 6.84416476026100649844370003329, 7.76361465397836950867888115551

Graph of the $Z$-function along the critical line