Properties

Label 2-5225-1.1-c1-0-135
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0881·2-s + 3.20·3-s − 1.99·4-s − 0.282·6-s + 1.95·7-s + 0.351·8-s + 7.26·9-s − 11-s − 6.38·12-s − 3.20·13-s − 0.172·14-s + 3.95·16-s − 0.503·17-s − 0.640·18-s + 19-s + 6.25·21-s + 0.0881·22-s − 1.05·23-s + 1.12·24-s + 0.282·26-s + 13.6·27-s − 3.88·28-s − 7.91·29-s + 9.52·31-s − 1.05·32-s − 3.20·33-s + 0.0444·34-s + ⋯
L(s)  = 1  − 0.0623·2-s + 1.84·3-s − 0.996·4-s − 0.115·6-s + 0.737·7-s + 0.124·8-s + 2.42·9-s − 0.301·11-s − 1.84·12-s − 0.889·13-s − 0.0459·14-s + 0.988·16-s − 0.122·17-s − 0.150·18-s + 0.229·19-s + 1.36·21-s + 0.0187·22-s − 0.220·23-s + 0.230·24-s + 0.0554·26-s + 2.62·27-s − 0.734·28-s − 1.46·29-s + 1.71·31-s − 0.186·32-s − 0.557·33-s + 0.00761·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.383795161\)
\(L(\frac12)\) \(\approx\) \(3.383795161\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 0.0881T + 2T^{2} \)
3 \( 1 - 3.20T + 3T^{2} \)
7 \( 1 - 1.95T + 7T^{2} \)
13 \( 1 + 3.20T + 13T^{2} \)
17 \( 1 + 0.503T + 17T^{2} \)
23 \( 1 + 1.05T + 23T^{2} \)
29 \( 1 + 7.91T + 29T^{2} \)
31 \( 1 - 9.52T + 31T^{2} \)
37 \( 1 - 5.22T + 37T^{2} \)
41 \( 1 - 8.32T + 41T^{2} \)
43 \( 1 - 8.04T + 43T^{2} \)
47 \( 1 - 9.39T + 47T^{2} \)
53 \( 1 + 2.37T + 53T^{2} \)
59 \( 1 + 2.80T + 59T^{2} \)
61 \( 1 + 1.53T + 61T^{2} \)
67 \( 1 - 9.79T + 67T^{2} \)
71 \( 1 + 4.45T + 71T^{2} \)
73 \( 1 - 1.55T + 73T^{2} \)
79 \( 1 - 3.00T + 79T^{2} \)
83 \( 1 - 2.22T + 83T^{2} \)
89 \( 1 - 6.10T + 89T^{2} \)
97 \( 1 - 4.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110619651858157412723337102639, −7.77734866256241517284942023535, −7.29683544537615590013359098252, −5.99129819944885544988406025884, −4.93447911365405427935608860989, −4.38978899331355348473531774541, −3.74734054949975880979652879261, −2.77061078574194524986136852395, −2.12475522881501442211525193575, −0.964258681392017245168158222203, 0.964258681392017245168158222203, 2.12475522881501442211525193575, 2.77061078574194524986136852395, 3.74734054949975880979652879261, 4.38978899331355348473531774541, 4.93447911365405427935608860989, 5.99129819944885544988406025884, 7.29683544537615590013359098252, 7.77734866256241517284942023535, 8.110619651858157412723337102639

Graph of the $Z$-function along the critical line