Properties

Label 2-5225-1.1-c1-0-123
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.790·2-s + 2.57·3-s − 1.37·4-s + 2.03·6-s + 0.0669·7-s − 2.66·8-s + 3.63·9-s − 11-s − 3.54·12-s + 4.14·13-s + 0.0528·14-s + 0.643·16-s − 6.61·17-s + 2.87·18-s − 19-s + 0.172·21-s − 0.790·22-s + 2.21·23-s − 6.86·24-s + 3.27·26-s + 1.62·27-s − 0.0920·28-s + 2.56·29-s + 8.77·31-s + 5.84·32-s − 2.57·33-s − 5.22·34-s + ⋯
L(s)  = 1  + 0.558·2-s + 1.48·3-s − 0.687·4-s + 0.830·6-s + 0.0252·7-s − 0.943·8-s + 1.21·9-s − 0.301·11-s − 1.02·12-s + 1.15·13-s + 0.0141·14-s + 0.160·16-s − 1.60·17-s + 0.676·18-s − 0.229·19-s + 0.0376·21-s − 0.168·22-s + 0.461·23-s − 1.40·24-s + 0.642·26-s + 0.313·27-s − 0.0173·28-s + 0.476·29-s + 1.57·31-s + 1.03·32-s − 0.448·33-s − 0.896·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.676561179\)
\(L(\frac12)\) \(\approx\) \(3.676561179\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good2 \( 1 - 0.790T + 2T^{2} \)
3 \( 1 - 2.57T + 3T^{2} \)
7 \( 1 - 0.0669T + 7T^{2} \)
13 \( 1 - 4.14T + 13T^{2} \)
17 \( 1 + 6.61T + 17T^{2} \)
23 \( 1 - 2.21T + 23T^{2} \)
29 \( 1 - 2.56T + 29T^{2} \)
31 \( 1 - 8.77T + 31T^{2} \)
37 \( 1 - 11.4T + 37T^{2} \)
41 \( 1 - 10.9T + 41T^{2} \)
43 \( 1 - 3.95T + 43T^{2} \)
47 \( 1 + 8.97T + 47T^{2} \)
53 \( 1 + 3.13T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 - 2.76T + 61T^{2} \)
67 \( 1 - 15.2T + 67T^{2} \)
71 \( 1 + 4.11T + 71T^{2} \)
73 \( 1 - 7.16T + 73T^{2} \)
79 \( 1 - 8.94T + 79T^{2} \)
83 \( 1 - 3.78T + 83T^{2} \)
89 \( 1 - 0.223T + 89T^{2} \)
97 \( 1 - 14.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.256357065043819532824637794429, −7.86995100060865302508956906694, −6.60799524956714545035590704346, −6.16746879655788994499661031841, −5.00478623129678181964985040318, −4.29983940188975405702386046857, −3.79502058605809742111776732880, −2.86955103111464929344163798260, −2.33313935757405480113689386897, −0.905530542850433538048393174798, 0.905530542850433538048393174798, 2.33313935757405480113689386897, 2.86955103111464929344163798260, 3.79502058605809742111776732880, 4.29983940188975405702386046857, 5.00478623129678181964985040318, 6.16746879655788994499661031841, 6.60799524956714545035590704346, 7.86995100060865302508956906694, 8.256357065043819532824637794429

Graph of the $Z$-function along the critical line