Properties

Label 2-5225-1.1-c1-0-10
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.104·2-s + 0.696·3-s − 1.98·4-s + 0.0725·6-s − 3.21·7-s − 0.415·8-s − 2.51·9-s − 11-s − 1.38·12-s − 4.65·13-s − 0.334·14-s + 3.93·16-s + 0.00602·17-s − 0.261·18-s − 19-s − 2.24·21-s − 0.104·22-s + 1.65·23-s − 0.289·24-s − 0.484·26-s − 3.84·27-s + 6.39·28-s + 3.49·29-s − 3.34·31-s + 1.24·32-s − 0.696·33-s + 0.000627·34-s + ⋯
L(s)  = 1  + 0.0736·2-s + 0.402·3-s − 0.994·4-s + 0.0296·6-s − 1.21·7-s − 0.146·8-s − 0.838·9-s − 0.301·11-s − 0.400·12-s − 1.29·13-s − 0.0895·14-s + 0.983·16-s + 0.00146·17-s − 0.0617·18-s − 0.229·19-s − 0.489·21-s − 0.0222·22-s + 0.345·23-s − 0.0591·24-s − 0.0950·26-s − 0.739·27-s + 1.20·28-s + 0.649·29-s − 0.600·31-s + 0.219·32-s − 0.121·33-s + 0.000107·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4588255891\)
\(L(\frac12)\) \(\approx\) \(0.4588255891\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good2 \( 1 - 0.104T + 2T^{2} \)
3 \( 1 - 0.696T + 3T^{2} \)
7 \( 1 + 3.21T + 7T^{2} \)
13 \( 1 + 4.65T + 13T^{2} \)
17 \( 1 - 0.00602T + 17T^{2} \)
23 \( 1 - 1.65T + 23T^{2} \)
29 \( 1 - 3.49T + 29T^{2} \)
31 \( 1 + 3.34T + 31T^{2} \)
37 \( 1 + 6.13T + 37T^{2} \)
41 \( 1 + 9.38T + 41T^{2} \)
43 \( 1 + 8.61T + 43T^{2} \)
47 \( 1 + 0.893T + 47T^{2} \)
53 \( 1 + 1.78T + 53T^{2} \)
59 \( 1 - 2.57T + 59T^{2} \)
61 \( 1 + 3.68T + 61T^{2} \)
67 \( 1 + 5.98T + 67T^{2} \)
71 \( 1 - 0.852T + 71T^{2} \)
73 \( 1 + 4.72T + 73T^{2} \)
79 \( 1 + 4.94T + 79T^{2} \)
83 \( 1 - 15.0T + 83T^{2} \)
89 \( 1 - 5.11T + 89T^{2} \)
97 \( 1 - 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.394523024923052674617185766375, −7.55631758301602478388909700722, −6.78916747437646939623409021612, −5.98188763320366041690448127255, −5.17616087120504242662362980743, −4.63815978632555991581915770045, −3.36694718064520745619864332223, −3.20714069065155209090285381049, −2.06071780952250466796985922724, −0.33432733389014779274322184622, 0.33432733389014779274322184622, 2.06071780952250466796985922724, 3.20714069065155209090285381049, 3.36694718064520745619864332223, 4.63815978632555991581915770045, 5.17616087120504242662362980743, 5.98188763320366041690448127255, 6.78916747437646939623409021612, 7.55631758301602478388909700722, 8.394523024923052674617185766375

Graph of the $Z$-function along the critical line