Properties

Label 2-5225-1.1-c1-0-1
Degree $2$
Conductor $5225$
Sign $1$
Analytic cond. $41.7218$
Root an. cond. $6.45924$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.456·2-s + 0.835·3-s − 1.79·4-s + 0.381·6-s − 4.69·7-s − 1.73·8-s − 2.30·9-s − 11-s − 1.49·12-s − 5.89·13-s − 2.14·14-s + 2.79·16-s − 7.06·17-s − 1.05·18-s + 19-s − 3.92·21-s − 0.456·22-s − 1.06·23-s − 1.44·24-s − 2.68·26-s − 4.42·27-s + 8.41·28-s − 7.62·29-s + 0.901·31-s + 4.73·32-s − 0.835·33-s − 3.22·34-s + ⋯
L(s)  = 1  + 0.322·2-s + 0.482·3-s − 0.895·4-s + 0.155·6-s − 1.77·7-s − 0.612·8-s − 0.767·9-s − 0.301·11-s − 0.431·12-s − 1.63·13-s − 0.573·14-s + 0.698·16-s − 1.71·17-s − 0.247·18-s + 0.229·19-s − 0.856·21-s − 0.0973·22-s − 0.221·23-s − 0.295·24-s − 0.527·26-s − 0.852·27-s + 1.59·28-s − 1.41·29-s + 0.161·31-s + 0.837·32-s − 0.145·33-s − 0.553·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5225\)    =    \(5^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(41.7218\)
Root analytic conductor: \(6.45924\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1566381386\)
\(L(\frac12)\) \(\approx\) \(0.1566381386\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 0.456T + 2T^{2} \)
3 \( 1 - 0.835T + 3T^{2} \)
7 \( 1 + 4.69T + 7T^{2} \)
13 \( 1 + 5.89T + 13T^{2} \)
17 \( 1 + 7.06T + 17T^{2} \)
23 \( 1 + 1.06T + 23T^{2} \)
29 \( 1 + 7.62T + 29T^{2} \)
31 \( 1 - 0.901T + 31T^{2} \)
37 \( 1 - 2.71T + 37T^{2} \)
41 \( 1 - 0.788T + 41T^{2} \)
43 \( 1 + 0.714T + 43T^{2} \)
47 \( 1 + 3.96T + 47T^{2} \)
53 \( 1 - 9.69T + 53T^{2} \)
59 \( 1 + 7.33T + 59T^{2} \)
61 \( 1 - 8.15T + 61T^{2} \)
67 \( 1 + 7.86T + 67T^{2} \)
71 \( 1 + 3.13T + 71T^{2} \)
73 \( 1 - 6.49T + 73T^{2} \)
79 \( 1 - 12.0T + 79T^{2} \)
83 \( 1 + 16.3T + 83T^{2} \)
89 \( 1 + 12.9T + 89T^{2} \)
97 \( 1 + 8.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.361393457605468976806231817947, −7.44170358536498916544719921868, −6.76586561791682131692479347500, −5.93370802638989914721170834643, −5.32581483667895675982144786814, −4.40358953043719234406217181187, −3.69213260051577802315390203307, −2.86703829920832219945011396266, −2.35292958203853112015935636451, −0.18155111429787974209470565393, 0.18155111429787974209470565393, 2.35292958203853112015935636451, 2.86703829920832219945011396266, 3.69213260051577802315390203307, 4.40358953043719234406217181187, 5.32581483667895675982144786814, 5.93370802638989914721170834643, 6.76586561791682131692479347500, 7.44170358536498916544719921868, 8.361393457605468976806231817947

Graph of the $Z$-function along the critical line