L(s) = 1 | + 0.456·2-s + 0.835·3-s − 1.79·4-s + 0.381·6-s − 4.69·7-s − 1.73·8-s − 2.30·9-s − 11-s − 1.49·12-s − 5.89·13-s − 2.14·14-s + 2.79·16-s − 7.06·17-s − 1.05·18-s + 19-s − 3.92·21-s − 0.456·22-s − 1.06·23-s − 1.44·24-s − 2.68·26-s − 4.42·27-s + 8.41·28-s − 7.62·29-s + 0.901·31-s + 4.73·32-s − 0.835·33-s − 3.22·34-s + ⋯ |
L(s) = 1 | + 0.322·2-s + 0.482·3-s − 0.895·4-s + 0.155·6-s − 1.77·7-s − 0.612·8-s − 0.767·9-s − 0.301·11-s − 0.431·12-s − 1.63·13-s − 0.573·14-s + 0.698·16-s − 1.71·17-s − 0.247·18-s + 0.229·19-s − 0.856·21-s − 0.0973·22-s − 0.221·23-s − 0.295·24-s − 0.527·26-s − 0.852·27-s + 1.59·28-s − 1.41·29-s + 0.161·31-s + 0.837·32-s − 0.145·33-s − 0.553·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1566381386\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1566381386\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 - 0.456T + 2T^{2} \) |
| 3 | \( 1 - 0.835T + 3T^{2} \) |
| 7 | \( 1 + 4.69T + 7T^{2} \) |
| 13 | \( 1 + 5.89T + 13T^{2} \) |
| 17 | \( 1 + 7.06T + 17T^{2} \) |
| 23 | \( 1 + 1.06T + 23T^{2} \) |
| 29 | \( 1 + 7.62T + 29T^{2} \) |
| 31 | \( 1 - 0.901T + 31T^{2} \) |
| 37 | \( 1 - 2.71T + 37T^{2} \) |
| 41 | \( 1 - 0.788T + 41T^{2} \) |
| 43 | \( 1 + 0.714T + 43T^{2} \) |
| 47 | \( 1 + 3.96T + 47T^{2} \) |
| 53 | \( 1 - 9.69T + 53T^{2} \) |
| 59 | \( 1 + 7.33T + 59T^{2} \) |
| 61 | \( 1 - 8.15T + 61T^{2} \) |
| 67 | \( 1 + 7.86T + 67T^{2} \) |
| 71 | \( 1 + 3.13T + 71T^{2} \) |
| 73 | \( 1 - 6.49T + 73T^{2} \) |
| 79 | \( 1 - 12.0T + 79T^{2} \) |
| 83 | \( 1 + 16.3T + 83T^{2} \) |
| 89 | \( 1 + 12.9T + 89T^{2} \) |
| 97 | \( 1 + 8.14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.361393457605468976806231817947, −7.44170358536498916544719921868, −6.76586561791682131692479347500, −5.93370802638989914721170834643, −5.32581483667895675982144786814, −4.40358953043719234406217181187, −3.69213260051577802315390203307, −2.86703829920832219945011396266, −2.35292958203853112015935636451, −0.18155111429787974209470565393,
0.18155111429787974209470565393, 2.35292958203853112015935636451, 2.86703829920832219945011396266, 3.69213260051577802315390203307, 4.40358953043719234406217181187, 5.32581483667895675982144786814, 5.93370802638989914721170834643, 6.76586561791682131692479347500, 7.44170358536498916544719921868, 8.361393457605468976806231817947