Properties

Label 2-5220-1.1-c1-0-34
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4.67·7-s + 0.672·11-s − 1.14·13-s − 3.52·17-s + 5.52·19-s + 3.81·23-s + 25-s + 29-s − 1.52·31-s − 4.67·35-s + 7.16·37-s − 2.85·41-s + 8.96·43-s + 6.67·47-s + 14.8·49-s − 10.4·53-s + 0.672·55-s − 10.7·59-s − 14.4·61-s − 1.14·65-s − 7.81·67-s − 4.48·71-s − 4.96·73-s − 3.14·77-s + 2.38·79-s − 14.0·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.76·7-s + 0.202·11-s − 0.317·13-s − 0.855·17-s + 1.26·19-s + 0.795·23-s + 0.200·25-s + 0.185·29-s − 0.274·31-s − 0.789·35-s + 1.17·37-s − 0.446·41-s + 1.36·43-s + 0.973·47-s + 2.11·49-s − 1.44·53-s + 0.0907·55-s − 1.40·59-s − 1.85·61-s − 0.141·65-s − 0.954·67-s − 0.532·71-s − 0.580·73-s − 0.358·77-s + 0.268·79-s − 1.53·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good7 \( 1 + 4.67T + 7T^{2} \)
11 \( 1 - 0.672T + 11T^{2} \)
13 \( 1 + 1.14T + 13T^{2} \)
17 \( 1 + 3.52T + 17T^{2} \)
19 \( 1 - 5.52T + 19T^{2} \)
23 \( 1 - 3.81T + 23T^{2} \)
31 \( 1 + 1.52T + 31T^{2} \)
37 \( 1 - 7.16T + 37T^{2} \)
41 \( 1 + 2.85T + 41T^{2} \)
43 \( 1 - 8.96T + 43T^{2} \)
47 \( 1 - 6.67T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + 10.7T + 59T^{2} \)
61 \( 1 + 14.4T + 61T^{2} \)
67 \( 1 + 7.81T + 67T^{2} \)
71 \( 1 + 4.48T + 71T^{2} \)
73 \( 1 + 4.96T + 73T^{2} \)
79 \( 1 - 2.38T + 79T^{2} \)
83 \( 1 + 14.0T + 83T^{2} \)
89 \( 1 - 1.63T + 89T^{2} \)
97 \( 1 + 9.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59856827358761333804860977260, −7.14200907682236930242847764227, −6.26439082449963576541415048603, −5.95375970594210402773554882291, −4.92846684637236090465011592352, −4.07560427281879546221822867948, −3.05966648970538958709406427185, −2.68416228837162531807896907641, −1.27692092150067006038620236935, 0, 1.27692092150067006038620236935, 2.68416228837162531807896907641, 3.05966648970538958709406427185, 4.07560427281879546221822867948, 4.92846684637236090465011592352, 5.95375970594210402773554882291, 6.26439082449963576541415048603, 7.14200907682236930242847764227, 7.59856827358761333804860977260

Graph of the $Z$-function along the critical line