Properties

Label 2-5220-1.1-c1-0-32
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·7-s + 3·11-s + 13-s + 3·17-s − 6·19-s + 4·23-s + 25-s − 29-s − 4·31-s + 3·35-s − 4·37-s − 2·41-s + 4·43-s + 3·47-s + 2·49-s − 6·53-s − 3·55-s + 10·59-s − 4·61-s − 65-s − 9·67-s + 12·71-s + 4·73-s − 9·77-s + 14·79-s − 6·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.13·7-s + 0.904·11-s + 0.277·13-s + 0.727·17-s − 1.37·19-s + 0.834·23-s + 1/5·25-s − 0.185·29-s − 0.718·31-s + 0.507·35-s − 0.657·37-s − 0.312·41-s + 0.609·43-s + 0.437·47-s + 2/7·49-s − 0.824·53-s − 0.404·55-s + 1.30·59-s − 0.512·61-s − 0.124·65-s − 1.09·67-s + 1.42·71-s + 0.468·73-s − 1.02·77-s + 1.57·79-s − 0.658·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 9 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 7 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82999347089749032002524118176, −6.97581278867617080176089594381, −6.52240527058937538600417208113, −5.81584015082331568938780501460, −4.87374882335068754123848938012, −3.85826409321470029780970608574, −3.51042092525369676638429564418, −2.47782508713054971289568363510, −1.25056308331003374559472083993, 0, 1.25056308331003374559472083993, 2.47782508713054971289568363510, 3.51042092525369676638429564418, 3.85826409321470029780970608574, 4.87374882335068754123848938012, 5.81584015082331568938780501460, 6.52240527058937538600417208113, 6.97581278867617080176089594381, 7.82999347089749032002524118176

Graph of the $Z$-function along the critical line