| L(s) = 1 | + 2.21·3-s + i·5-s − 2.90i·7-s + 1.90·9-s + 5.73i·11-s + (3.59 − 0.311i)13-s + 2.21i·15-s + 5.80·17-s − 5.11i·19-s − 6.42i·21-s + 5.59·23-s − 25-s − 2.42·27-s − 8.57·29-s − 1.44i·31-s + ⋯ |
| L(s) = 1 | + 1.27·3-s + 0.447i·5-s − 1.09i·7-s + 0.634·9-s + 1.73i·11-s + (0.996 − 0.0862i)13-s + 0.571i·15-s + 1.40·17-s − 1.17i·19-s − 1.40i·21-s + 1.16·23-s − 0.200·25-s − 0.467·27-s − 1.59·29-s − 0.259i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.21894 + 0.0959105i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.21894 + 0.0959105i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (-3.59 + 0.311i)T \) |
| good | 3 | \( 1 - 2.21T + 3T^{2} \) |
| 7 | \( 1 + 2.90iT - 7T^{2} \) |
| 11 | \( 1 - 5.73iT - 11T^{2} \) |
| 17 | \( 1 - 5.80T + 17T^{2} \) |
| 19 | \( 1 + 5.11iT - 19T^{2} \) |
| 23 | \( 1 - 5.59T + 23T^{2} \) |
| 29 | \( 1 + 8.57T + 29T^{2} \) |
| 31 | \( 1 + 1.44iT - 31T^{2} \) |
| 37 | \( 1 - 0.474iT - 37T^{2} \) |
| 41 | \( 1 - 9.47iT - 41T^{2} \) |
| 43 | \( 1 + 12.6T + 43T^{2} \) |
| 47 | \( 1 + 8.70iT - 47T^{2} \) |
| 53 | \( 1 + 9.47T + 53T^{2} \) |
| 59 | \( 1 - 0.688iT - 59T^{2} \) |
| 61 | \( 1 + 3.85T + 61T^{2} \) |
| 67 | \( 1 + 5.52iT - 67T^{2} \) |
| 71 | \( 1 + 12.7iT - 71T^{2} \) |
| 73 | \( 1 - 11.1iT - 73T^{2} \) |
| 79 | \( 1 + 0.561T + 79T^{2} \) |
| 83 | \( 1 - 7.03iT - 83T^{2} \) |
| 89 | \( 1 + 1.80iT - 89T^{2} \) |
| 97 | \( 1 - 12.6iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72347152688428224937321257876, −9.825246541528618074058629300851, −9.253542635855182769837828820134, −8.043922204562300660408763811238, −7.41329026753843705724165188297, −6.68845892005823649756374274696, −5.02304279912274639161494081845, −3.84729223034356995790342844812, −3.05230212580548770520633155933, −1.63445413674556495583183579738,
1.55946052307349935851148426919, 3.11991960616155416087393060926, 3.60204928733804626900859340499, 5.46605726124465745295766604543, 5.98934407387314998510187336801, 7.65686183322127789906197311912, 8.474274680161090344185381098798, 8.807328771523395874190286582227, 9.633188474801713344708838400541, 10.90001259014701149126930340698