L(s) = 1 | + (−1.37 − 0.314i)2-s + (1.00 − 0.580i)3-s + (1.80 + 0.866i)4-s − 5-s + (−1.56 + 0.484i)6-s + (−2.74 − 1.58i)7-s + (−2.21 − 1.76i)8-s + (−0.826 + 1.43i)9-s + (1.37 + 0.314i)10-s + (1.23 + 2.13i)11-s + (2.31 − 0.175i)12-s + (−3.60 + 0.150i)13-s + (3.28 + 3.04i)14-s + (−1.00 + 0.580i)15-s + (2.49 + 3.12i)16-s + (0.369 − 0.639i)17-s + ⋯ |
L(s) = 1 | + (−0.975 − 0.222i)2-s + (0.580 − 0.335i)3-s + (0.901 + 0.433i)4-s − 0.447·5-s + (−0.640 + 0.197i)6-s + (−1.03 − 0.598i)7-s + (−0.782 − 0.622i)8-s + (−0.275 + 0.477i)9-s + (0.436 + 0.0993i)10-s + (0.371 + 0.643i)11-s + (0.668 − 0.0506i)12-s + (−0.999 + 0.0416i)13-s + (0.877 + 0.813i)14-s + (−0.259 + 0.149i)15-s + (0.624 + 0.780i)16-s + (0.0895 − 0.155i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.393 - 0.919i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.393 - 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.188612 + 0.285840i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.188612 + 0.285840i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 + 0.314i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (3.60 - 0.150i)T \) |
good | 3 | \( 1 + (-1.00 + 0.580i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (2.74 + 1.58i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.23 - 2.13i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.369 + 0.639i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.31 - 7.47i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.88 - 4.99i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.59 - 0.919i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.05iT - 31T^{2} \) |
| 37 | \( 1 + (1.35 + 2.35i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.165 + 0.0952i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (7.43 + 4.29i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.23iT - 47T^{2} \) |
| 53 | \( 1 - 4.18iT - 53T^{2} \) |
| 59 | \( 1 + (5.72 - 9.91i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.03 - 2.32i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.66 - 2.88i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.24 + 1.87i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.03iT - 73T^{2} \) |
| 79 | \( 1 + 9.18T + 79T^{2} \) |
| 83 | \( 1 + 1.79T + 83T^{2} \) |
| 89 | \( 1 + (-12.1 + 7.04i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (14.8 + 8.56i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96051751544935980408365514137, −10.04012227086343411267584201556, −9.490231794023385946913093569860, −8.459086991544363711731775308859, −7.51537772525961006027860131916, −7.15886690345862332931027653983, −5.90666351496517936681506198735, −4.08270555067138177090724052583, −3.03836663231841410039581612260, −1.81947966037899846799081034255,
0.23850039913141593039634511011, 2.57988806567746090943293200224, 3.32347536429935554109786659883, 4.99614085578644346882732364950, 6.46331723404372444381385200953, 6.83412052557288632239747765068, 8.311065559549145556198772687718, 8.843466854780396349829276609671, 9.453817875088727568639757195770, 10.34537044642805908278720904578