Properties

Label 2-520-104.101-c1-0-17
Degree 22
Conductor 520520
Sign 0.8060.590i0.806 - 0.590i
Analytic cond. 4.152224.15222
Root an. cond. 2.037692.03769
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.13 − 0.844i)2-s + (−1.79 + 1.03i)3-s + (0.572 + 1.91i)4-s + 5-s + (2.91 + 0.341i)6-s + (3.65 + 2.10i)7-s + (0.969 − 2.65i)8-s + (0.658 − 1.14i)9-s + (−1.13 − 0.844i)10-s + (−2.34 − 4.05i)11-s + (−3.02 − 2.85i)12-s + (3.60 + 0.189i)13-s + (−2.36 − 5.48i)14-s + (−1.79 + 1.03i)15-s + (−3.34 + 2.19i)16-s + (1.44 − 2.49i)17-s + ⋯
L(s)  = 1  + (−0.801 − 0.597i)2-s + (−1.03 + 0.599i)3-s + (0.286 + 0.958i)4-s + 0.447·5-s + (1.19 + 0.139i)6-s + (1.38 + 0.797i)7-s + (0.342 − 0.939i)8-s + (0.219 − 0.380i)9-s + (−0.358 − 0.267i)10-s + (−0.705 − 1.22i)11-s + (−0.872 − 0.823i)12-s + (0.998 + 0.0524i)13-s + (−0.631 − 1.46i)14-s + (−0.464 + 0.268i)15-s + (−0.836 + 0.548i)16-s + (0.349 − 0.605i)17-s + ⋯

Functional equation

Λ(s)=(520s/2ΓC(s)L(s)=((0.8060.590i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.806 - 0.590i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(520s/2ΓC(s+1/2)L(s)=((0.8060.590i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.806 - 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 520520    =    235132^{3} \cdot 5 \cdot 13
Sign: 0.8060.590i0.806 - 0.590i
Analytic conductor: 4.152224.15222
Root analytic conductor: 2.037692.03769
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ520(101,)\chi_{520} (101, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 520, ( :1/2), 0.8060.590i)(2,\ 520,\ (\ :1/2),\ 0.806 - 0.590i)

Particular Values

L(1)L(1) \approx 0.796381+0.260381i0.796381 + 0.260381i
L(12)L(\frac12) \approx 0.796381+0.260381i0.796381 + 0.260381i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.13+0.844i)T 1 + (1.13 + 0.844i)T
5 1T 1 - T
13 1+(3.600.189i)T 1 + (-3.60 - 0.189i)T
good3 1+(1.791.03i)T+(1.52.59i)T2 1 + (1.79 - 1.03i)T + (1.5 - 2.59i)T^{2}
7 1+(3.652.10i)T+(3.5+6.06i)T2 1 + (-3.65 - 2.10i)T + (3.5 + 6.06i)T^{2}
11 1+(2.34+4.05i)T+(5.5+9.52i)T2 1 + (2.34 + 4.05i)T + (-5.5 + 9.52i)T^{2}
17 1+(1.44+2.49i)T+(8.514.7i)T2 1 + (-1.44 + 2.49i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.095.36i)T+(9.516.4i)T2 1 + (3.09 - 5.36i)T + (-9.5 - 16.4i)T^{2}
23 1+(3.365.82i)T+(11.5+19.9i)T2 1 + (-3.36 - 5.82i)T + (-11.5 + 19.9i)T^{2}
29 1+(4.64+2.68i)T+(14.525.1i)T2 1 + (-4.64 + 2.68i)T + (14.5 - 25.1i)T^{2}
31 1+0.540iT31T2 1 + 0.540iT - 31T^{2}
37 1+(0.815+1.41i)T+(18.5+32.0i)T2 1 + (0.815 + 1.41i)T + (-18.5 + 32.0i)T^{2}
41 1+(1.36+0.789i)T+(20.535.5i)T2 1 + (-1.36 + 0.789i)T + (20.5 - 35.5i)T^{2}
43 1+(4.992.88i)T+(21.5+37.2i)T2 1 + (-4.99 - 2.88i)T + (21.5 + 37.2i)T^{2}
47 14.24iT47T2 1 - 4.24iT - 47T^{2}
53 110.7iT53T2 1 - 10.7iT - 53T^{2}
59 1+(6.9011.9i)T+(29.551.0i)T2 1 + (6.90 - 11.9i)T + (-29.5 - 51.0i)T^{2}
61 1+(6.453.72i)T+(30.5+52.8i)T2 1 + (-6.45 - 3.72i)T + (30.5 + 52.8i)T^{2}
67 1+(5.529.57i)T+(33.5+58.0i)T2 1 + (-5.52 - 9.57i)T + (-33.5 + 58.0i)T^{2}
71 1+(8.93+5.15i)T+(35.5+61.4i)T2 1 + (8.93 + 5.15i)T + (35.5 + 61.4i)T^{2}
73 1+8.13iT73T2 1 + 8.13iT - 73T^{2}
79 11.61T+79T2 1 - 1.61T + 79T^{2}
83 13.34T+83T2 1 - 3.34T + 83T^{2}
89 1+(2.761.59i)T+(44.577.0i)T2 1 + (2.76 - 1.59i)T + (44.5 - 77.0i)T^{2}
97 1+(12.2+7.09i)T+(48.5+84.0i)T2 1 + (12.2 + 7.09i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.86627605005663370706689251218, −10.45787369327991265725909781866, −9.241408818864349201915985013040, −8.429008603942203539794412099271, −7.74588590102519224213577279417, −6.01421454827691421676884965076, −5.51478778382515855011436974036, −4.29108469513602712416664195519, −2.78417040457083400144545837934, −1.28739766371890923452365242269, 0.882103951370454201762910237446, 2.00470521090412996144851018655, 4.66518865462716043984814554871, 5.26703748379984168530997338460, 6.51331477354060702325042643280, 6.98686164863124459060446955017, 8.026225366806255322250961459473, 8.769090280003424979757663586119, 10.12339430246743244909521323978, 10.86122329163413485650858103004

Graph of the ZZ-function along the critical line