L(s) = 1 | + (−1.30 + 0.554i)2-s + (0.176 − 0.101i)3-s + (1.38 − 1.44i)4-s + 5-s + (−0.173 + 0.230i)6-s + (0.820 + 0.473i)7-s + (−0.999 + 2.64i)8-s + (−1.47 + 2.56i)9-s + (−1.30 + 0.554i)10-s + (0.455 + 0.788i)11-s + (0.0972 − 0.395i)12-s + (−2.46 + 2.63i)13-s + (−1.33 − 0.160i)14-s + (0.176 − 0.101i)15-s + (−0.168 − 3.99i)16-s + (−1.02 + 1.77i)17-s + ⋯ |
L(s) = 1 | + (−0.919 + 0.392i)2-s + (0.101 − 0.0588i)3-s + (0.692 − 0.721i)4-s + 0.447·5-s + (−0.0706 + 0.0941i)6-s + (0.310 + 0.179i)7-s + (−0.353 + 0.935i)8-s + (−0.493 + 0.854i)9-s + (−0.411 + 0.175i)10-s + (0.137 + 0.237i)11-s + (0.0280 − 0.114i)12-s + (−0.683 + 0.729i)13-s + (−0.355 − 0.0429i)14-s + (0.0455 − 0.0263i)15-s + (−0.0421 − 0.999i)16-s + (−0.248 + 0.431i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.0796−0.996i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.0796−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.0796−0.996i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.0796−0.996i)
|
Particular Values
L(1) |
≈ |
0.699677+0.645986i |
L(21) |
≈ |
0.699677+0.645986i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.30−0.554i)T |
| 5 | 1−T |
| 13 | 1+(2.46−2.63i)T |
good | 3 | 1+(−0.176+0.101i)T+(1.5−2.59i)T2 |
| 7 | 1+(−0.820−0.473i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.455−0.788i)T+(−5.5+9.52i)T2 |
| 17 | 1+(1.02−1.77i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.975+1.68i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.80−6.58i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−7.35+4.24i)T+(14.5−25.1i)T2 |
| 31 | 1−6.07iT−31T2 |
| 37 | 1+(5.00+8.66i)T+(−18.5+32.0i)T2 |
| 41 | 1+(4.12−2.37i)T+(20.5−35.5i)T2 |
| 43 | 1+(−4.14−2.39i)T+(21.5+37.2i)T2 |
| 47 | 1−10.4iT−47T2 |
| 53 | 1−11.4iT−53T2 |
| 59 | 1+(−4.67+8.09i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.13−1.81i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.283+0.491i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−8.63−4.98i)T+(35.5+61.4i)T2 |
| 73 | 1−1.67iT−73T2 |
| 79 | 1−5.13T+79T2 |
| 83 | 1+15.0T+83T2 |
| 89 | 1+(1.09−0.634i)T+(44.5−77.0i)T2 |
| 97 | 1+(6.15+3.55i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97882022457695584469151245992, −10.03510670539988173099648595143, −9.226414074617937549347954200620, −8.493361157099738673754227071196, −7.53381779246546820518224360462, −6.74974327836501840978314972653, −5.60627502144894919236160114379, −4.78002797585200968914669903065, −2.71248203388969820265342267143, −1.64541499479438974188194397674,
0.76470986271981354576136317840, 2.46404727609633376248121839187, 3.44264558712434289879259311658, 4.98813574211627326999586478497, 6.33589991779199070785204836393, 7.09915261038516645517193852894, 8.329237694881032459937925497375, 8.830864711139020381053759031108, 9.895599838529008787999698702445, 10.41527900862204072383422763766