L(s) = 1 | + (−1.30 + 0.554i)2-s + (0.176 − 0.101i)3-s + (1.38 − 1.44i)4-s + 5-s + (−0.173 + 0.230i)6-s + (0.820 + 0.473i)7-s + (−0.999 + 2.64i)8-s + (−1.47 + 2.56i)9-s + (−1.30 + 0.554i)10-s + (0.455 + 0.788i)11-s + (0.0972 − 0.395i)12-s + (−2.46 + 2.63i)13-s + (−1.33 − 0.160i)14-s + (0.176 − 0.101i)15-s + (−0.168 − 3.99i)16-s + (−1.02 + 1.77i)17-s + ⋯ |
L(s) = 1 | + (−0.919 + 0.392i)2-s + (0.101 − 0.0588i)3-s + (0.692 − 0.721i)4-s + 0.447·5-s + (−0.0706 + 0.0941i)6-s + (0.310 + 0.179i)7-s + (−0.353 + 0.935i)8-s + (−0.493 + 0.854i)9-s + (−0.411 + 0.175i)10-s + (0.137 + 0.237i)11-s + (0.0280 − 0.114i)12-s + (−0.683 + 0.729i)13-s + (−0.355 − 0.0429i)14-s + (0.0455 − 0.0263i)15-s + (−0.0421 − 0.999i)16-s + (−0.248 + 0.431i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0796 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0796 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.699677 + 0.645986i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.699677 + 0.645986i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.30 - 0.554i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (2.46 - 2.63i)T \) |
good | 3 | \( 1 + (-0.176 + 0.101i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.820 - 0.473i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.455 - 0.788i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.02 - 1.77i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.975 + 1.68i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.80 - 6.58i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-7.35 + 4.24i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 6.07iT - 31T^{2} \) |
| 37 | \( 1 + (5.00 + 8.66i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.12 - 2.37i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.14 - 2.39i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 10.4iT - 47T^{2} \) |
| 53 | \( 1 - 11.4iT - 53T^{2} \) |
| 59 | \( 1 + (-4.67 + 8.09i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.13 - 1.81i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.283 + 0.491i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.63 - 4.98i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 1.67iT - 73T^{2} \) |
| 79 | \( 1 - 5.13T + 79T^{2} \) |
| 83 | \( 1 + 15.0T + 83T^{2} \) |
| 89 | \( 1 + (1.09 - 0.634i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.15 + 3.55i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97882022457695584469151245992, −10.03510670539988173099648595143, −9.226414074617937549347954200620, −8.493361157099738673754227071196, −7.53381779246546820518224360462, −6.74974327836501840978314972653, −5.60627502144894919236160114379, −4.78002797585200968914669903065, −2.71248203388969820265342267143, −1.64541499479438974188194397674,
0.76470986271981354576136317840, 2.46404727609633376248121839187, 3.44264558712434289879259311658, 4.98813574211627326999586478497, 6.33589991779199070785204836393, 7.09915261038516645517193852894, 8.329237694881032459937925497375, 8.830864711139020381053759031108, 9.895599838529008787999698702445, 10.41527900862204072383422763766