Properties

Label 2-520-1.1-c1-0-8
Degree $2$
Conductor $520$
Sign $-1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·3-s − 5-s + 3.46·7-s + 4.46·9-s − 4.73·11-s + 13-s + 2.73·15-s + 3.46·17-s − 3.26·19-s − 9.46·21-s − 8.19·23-s + 25-s − 3.99·27-s − 5.46·29-s − 4.73·31-s + 12.9·33-s − 3.46·35-s − 2.92·37-s − 2.73·39-s − 11.4·41-s − 2.73·43-s − 4.46·45-s − 11.4·47-s + 4.99·49-s − 9.46·51-s + 11.4·53-s + 4.73·55-s + ⋯
L(s)  = 1  − 1.57·3-s − 0.447·5-s + 1.30·7-s + 1.48·9-s − 1.42·11-s + 0.277·13-s + 0.705·15-s + 0.840·17-s − 0.749·19-s − 2.06·21-s − 1.70·23-s + 0.200·25-s − 0.769·27-s − 1.01·29-s − 0.849·31-s + 2.25·33-s − 0.585·35-s − 0.481·37-s − 0.437·39-s − 1.79·41-s − 0.416·43-s − 0.665·45-s − 1.67·47-s + 0.714·49-s − 1.32·51-s + 1.57·53-s + 0.638·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + 2.73T + 3T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
17 \( 1 - 3.46T + 17T^{2} \)
19 \( 1 + 3.26T + 19T^{2} \)
23 \( 1 + 8.19T + 23T^{2} \)
29 \( 1 + 5.46T + 29T^{2} \)
31 \( 1 + 4.73T + 31T^{2} \)
37 \( 1 + 2.92T + 37T^{2} \)
41 \( 1 + 11.4T + 41T^{2} \)
43 \( 1 + 2.73T + 43T^{2} \)
47 \( 1 + 11.4T + 47T^{2} \)
53 \( 1 - 11.4T + 53T^{2} \)
59 \( 1 + 1.80T + 59T^{2} \)
61 \( 1 + 5.46T + 61T^{2} \)
67 \( 1 - 15.8T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 2.53T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 + 4.92T + 89T^{2} \)
97 \( 1 + 11.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67939226300009498683036175791, −9.985991761166376446029206978185, −8.288065314053177400713893649315, −7.80173148123790898397936960560, −6.64653439999913368194663080924, −5.43265725492251751132299410745, −5.11478040052637747315415565434, −3.88298379110998166088159572425, −1.81929885707206905671207715858, 0, 1.81929885707206905671207715858, 3.88298379110998166088159572425, 5.11478040052637747315415565434, 5.43265725492251751132299410745, 6.64653439999913368194663080924, 7.80173148123790898397936960560, 8.288065314053177400713893649315, 9.985991761166376446029206978185, 10.67939226300009498683036175791

Graph of the $Z$-function along the critical line