Properties

Label 2-520-1.1-c1-0-10
Degree $2$
Conductor $520$
Sign $-1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3·9-s − 4·11-s − 13-s − 6·17-s + 4·19-s + 25-s − 2·29-s − 4·31-s − 6·37-s − 6·41-s + 8·43-s + 3·45-s − 7·49-s + 2·53-s + 4·55-s + 4·59-s − 10·61-s + 65-s + 12·67-s − 4·71-s + 14·73-s − 16·79-s + 9·81-s + 12·83-s + 6·85-s + 2·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 9-s − 1.20·11-s − 0.277·13-s − 1.45·17-s + 0.917·19-s + 1/5·25-s − 0.371·29-s − 0.718·31-s − 0.986·37-s − 0.937·41-s + 1.21·43-s + 0.447·45-s − 49-s + 0.274·53-s + 0.539·55-s + 0.520·59-s − 1.28·61-s + 0.124·65-s + 1.46·67-s − 0.474·71-s + 1.63·73-s − 1.80·79-s + 81-s + 1.31·83-s + 0.650·85-s + 0.211·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64922295335439854088297490672, −9.462643365908751567949324738666, −8.594892869331333585303013523541, −7.79079474566761964794309748173, −6.86780410309443942051298695606, −5.62737400849428477363472437992, −4.82936854271082841274403128466, −3.43584232426055948992159380385, −2.33964853650557930856432843128, 0, 2.33964853650557930856432843128, 3.43584232426055948992159380385, 4.82936854271082841274403128466, 5.62737400849428477363472437992, 6.86780410309443942051298695606, 7.79079474566761964794309748173, 8.594892869331333585303013523541, 9.462643365908751567949324738666, 10.64922295335439854088297490672

Graph of the $Z$-function along the critical line