L(s) = 1 | − 5-s − 3·9-s − 4·11-s − 13-s − 6·17-s + 4·19-s + 25-s − 2·29-s − 4·31-s − 6·37-s − 6·41-s + 8·43-s + 3·45-s − 7·49-s + 2·53-s + 4·55-s + 4·59-s − 10·61-s + 65-s + 12·67-s − 4·71-s + 14·73-s − 16·79-s + 9·81-s + 12·83-s + 6·85-s + 2·89-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 9-s − 1.20·11-s − 0.277·13-s − 1.45·17-s + 0.917·19-s + 1/5·25-s − 0.371·29-s − 0.718·31-s − 0.986·37-s − 0.937·41-s + 1.21·43-s + 0.447·45-s − 49-s + 0.274·53-s + 0.539·55-s + 0.520·59-s − 1.28·61-s + 0.124·65-s + 1.46·67-s − 0.474·71-s + 1.63·73-s − 1.80·79-s + 81-s + 1.31·83-s + 0.650·85-s + 0.211·89-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 13 | 1+T |
good | 3 | 1+pT2 |
| 7 | 1+pT2 |
| 11 | 1+4T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64922295335439854088297490672, −9.462643365908751567949324738666, −8.594892869331333585303013523541, −7.79079474566761964794309748173, −6.86780410309443942051298695606, −5.62737400849428477363472437992, −4.82936854271082841274403128466, −3.43584232426055948992159380385, −2.33964853650557930856432843128, 0,
2.33964853650557930856432843128, 3.43584232426055948992159380385, 4.82936854271082841274403128466, 5.62737400849428477363472437992, 6.86780410309443942051298695606, 7.79079474566761964794309748173, 8.594892869331333585303013523541, 9.462643365908751567949324738666, 10.64922295335439854088297490672