Properties

Label 2-52-52.15-c1-0-1
Degree $2$
Conductor $52$
Sign $0.884 + 0.466i$
Analytic cond. $0.415222$
Root an. cond. $0.644377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.36 − 0.366i)2-s + (1.73 + i)4-s + (2.36 − 2.36i)5-s + (−1.99 − 2i)8-s + (−1.5 + 2.59i)9-s + (−4.09 + 2.36i)10-s + (−1.59 + 3.23i)13-s + (1.99 + 3.46i)16-s + (−5.13 − 2.96i)17-s + (3 − 3i)18-s + (6.46 − 1.73i)20-s − 6.19i·25-s + (3.36 − 3.83i)26-s + (5.33 + 9.23i)29-s + (−1.46 − 5.46i)32-s + ⋯
L(s)  = 1  + (−0.965 − 0.258i)2-s + (0.866 + 0.5i)4-s + (1.05 − 1.05i)5-s + (−0.707 − 0.707i)8-s + (−0.5 + 0.866i)9-s + (−1.29 + 0.748i)10-s + (−0.443 + 0.896i)13-s + (0.499 + 0.866i)16-s + (−1.24 − 0.718i)17-s + (0.707 − 0.707i)18-s + (1.44 − 0.387i)20-s − 1.23i·25-s + (0.660 − 0.751i)26-s + (0.989 + 1.71i)29-s + (−0.258 − 0.965i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 + 0.466i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52\)    =    \(2^{2} \cdot 13\)
Sign: $0.884 + 0.466i$
Analytic conductor: \(0.415222\)
Root analytic conductor: \(0.644377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{52} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 52,\ (\ :1/2),\ 0.884 + 0.466i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.613181 - 0.151676i\)
\(L(\frac12)\) \(\approx\) \(0.613181 - 0.151676i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.36 + 0.366i)T \)
13 \( 1 + (1.59 - 3.23i)T \)
good3 \( 1 + (1.5 - 2.59i)T^{2} \)
5 \( 1 + (-2.36 + 2.36i)T - 5iT^{2} \)
7 \( 1 + (-6.06 + 3.5i)T^{2} \)
11 \( 1 + (9.52 + 5.5i)T^{2} \)
17 \( 1 + (5.13 + 2.96i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (16.4 - 9.5i)T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-5.33 - 9.23i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 31iT^{2} \)
37 \( 1 + (-1.30 + 4.86i)T + (-32.0 - 18.5i)T^{2} \)
41 \( 1 + (11.3 + 3.03i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 47iT^{2} \)
53 \( 1 - 3.53T + 53T^{2} \)
59 \( 1 + (-51.0 + 29.5i)T^{2} \)
61 \( 1 + (-7.69 + 13.3i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-58.0 - 33.5i)T^{2} \)
71 \( 1 + (61.4 - 35.5i)T^{2} \)
73 \( 1 + (-1.16 - 1.16i)T + 73iT^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83iT^{2} \)
89 \( 1 + (-1.09 + 4.09i)T + (-77.0 - 44.5i)T^{2} \)
97 \( 1 + (-1.83 - 6.83i)T + (-84.0 + 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.92779806234524622184594174217, −14.09412360474624335344821262968, −13.04059856680015448780656299975, −11.79859551067721359807291982850, −10.53082283933156996669328733270, −9.277298427706364785580054008499, −8.565546882230064109159812458026, −6.83866115633538702196975753435, −5.09050989394721151313931821163, −2.11364378716024042732234045340, 2.62947401537451165449889642003, 5.93276301048617207890464001909, 6.77367751703942809267965650864, 8.430056323170363233677259055606, 9.769975835584312212024210673018, 10.53412890432023641970963521843, 11.78873432927377956931661533151, 13.53509954359213331310651820790, 14.82557050759146208067415828483, 15.37585582276120541336245446028

Graph of the $Z$-function along the critical line