| L(s) = 1 | + 2-s − 4-s + (1.5 − 2.59i)5-s + (−0.5 + 0.866i)7-s − 3·8-s + (1.5 − 2.59i)10-s + (2.5 − 4.33i)11-s + 2·13-s + (−0.5 + 0.866i)14-s − 16-s + (−2.5 − 4.33i)17-s + (−4 − 1.73i)19-s + (−1.5 + 2.59i)20-s + (2.5 − 4.33i)22-s + 8·23-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 0.5·4-s + (0.670 − 1.16i)5-s + (−0.188 + 0.327i)7-s − 1.06·8-s + (0.474 − 0.821i)10-s + (0.753 − 1.30i)11-s + 0.554·13-s + (−0.133 + 0.231i)14-s − 0.250·16-s + (−0.606 − 1.05i)17-s + (−0.917 − 0.397i)19-s + (−0.335 + 0.580i)20-s + (0.533 − 0.923i)22-s + 1.66·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.40146 - 1.08726i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.40146 - 1.08726i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 + (4 + 1.73i)T \) |
| good | 2 | \( 1 - T + 2T^{2} \) |
| 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.5 + 4.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + (2.5 + 4.33i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.5 + 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (4.5 - 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (-1.5 - 2.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.5 + 4.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 - 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (-1.5 - 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.5 - 4.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + (-4.5 + 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.5 - 7.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91384935628381307222436404766, −9.362046566952785027380932478605, −9.032124461165936428124012183113, −8.454700749589732818573235484125, −6.67081282037641343310408089975, −5.79137646571029282900666616071, −5.06450152971063791987442076242, −4.11292377461692986495831951384, −2.85709201888239440729044740170, −0.908231246757982693412524793332,
2.01474078976988284388639713737, 3.44325456370739893219454591961, 4.24844431772037051666896848580, 5.46301976718831207749452064709, 6.57030618555972615084422493908, 6.95781555306581834019505513278, 8.590614313617980126603795270848, 9.352890509838825044329121836570, 10.36159101781948981459378157298, 10.88038570025937315973689881314