Properties

Label 2-5070-13.12-c1-0-31
Degree $2$
Conductor $5070$
Sign $0.832 - 0.554i$
Analytic cond. $40.4841$
Root an. cond. $6.36271$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 3-s − 4-s + i·5-s i·6-s + 2i·7-s + i·8-s + 9-s + 10-s − 12-s + 2·14-s + i·15-s + 16-s i·18-s − 2i·19-s i·20-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577·3-s − 0.5·4-s + 0.447i·5-s − 0.408i·6-s + 0.755i·7-s + 0.353i·8-s + 0.333·9-s + 0.316·10-s − 0.288·12-s + 0.534·14-s + 0.258i·15-s + 0.250·16-s − 0.235i·18-s − 0.458i·19-s − 0.223i·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5070\)    =    \(2 \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $0.832 - 0.554i$
Analytic conductor: \(40.4841\)
Root analytic conductor: \(6.36271\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5070} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5070,\ (\ :1/2),\ 0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.097657410\)
\(L(\frac12)\) \(\approx\) \(2.097657410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 - T \)
5 \( 1 - iT \)
13 \( 1 \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 4iT - 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 6iT - 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 - 8iT - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 - 6iT - 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.453759769084378217737790441724, −7.72396099817686158039038024753, −6.91327415804241022931897801510, −6.15564634257488720778145523548, −5.18371594968828039866394849513, −4.55224464269995044246134600256, −3.48082916968044289119079336935, −2.89190716999261922645646820403, −2.21395341874504585781092200842, −1.12664987648233769261960092703, 0.57548045762163227066885860546, 1.66860415195555780406686943718, 2.92301842864586702579521695990, 3.83875701704384749159726300700, 4.44398402993999719145757551735, 5.24331532351623691715885429779, 6.05688339399078210721993952036, 6.88481688968352137943313621485, 7.56203604562913967617033268408, 7.957909397047282314732791807547

Graph of the $Z$-function along the critical line