Properties

Label 2-507-507.422-c1-0-9
Degree $2$
Conductor $507$
Sign $-0.753 - 0.657i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.56 + 0.0517i)2-s + (−1.06 + 1.36i)3-s + (4.59 − 0.185i)4-s + (1.13 − 0.207i)5-s + (2.66 − 3.56i)6-s + (−0.888 + 0.587i)7-s + (−6.65 + 0.402i)8-s + (−0.730 − 2.90i)9-s + (−2.90 + 0.592i)10-s + (0.952 + 1.72i)11-s + (−4.63 + 6.46i)12-s + (−1.90 + 3.06i)13-s + (2.25 − 1.55i)14-s + (−0.924 + 1.77i)15-s + (7.90 − 0.638i)16-s + (0.362 − 1.77i)17-s + ⋯
L(s)  = 1  + (−1.81 + 0.0365i)2-s + (−0.615 + 0.788i)3-s + (2.29 − 0.0925i)4-s + (0.507 − 0.0929i)5-s + (1.08 − 1.45i)6-s + (−0.335 + 0.222i)7-s + (−2.35 + 0.142i)8-s + (−0.243 − 0.969i)9-s + (−0.917 + 0.187i)10-s + (0.287 + 0.521i)11-s + (−1.33 + 1.86i)12-s + (−0.528 + 0.848i)13-s + (0.601 − 0.415i)14-s + (−0.238 + 0.457i)15-s + (1.97 − 0.159i)16-s + (0.0880 − 0.431i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.753 - 0.657i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.753 - 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $-0.753 - 0.657i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (422, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ -0.753 - 0.657i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.128724 + 0.343406i\)
\(L(\frac12)\) \(\approx\) \(0.128724 + 0.343406i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.06 - 1.36i)T \)
13 \( 1 + (1.90 - 3.06i)T \)
good2 \( 1 + (2.56 - 0.0517i)T + (1.99 - 0.0805i)T^{2} \)
5 \( 1 + (-1.13 + 0.207i)T + (4.67 - 1.77i)T^{2} \)
7 \( 1 + (0.888 - 0.587i)T + (2.74 - 6.43i)T^{2} \)
11 \( 1 + (-0.952 - 1.72i)T + (-5.87 + 9.29i)T^{2} \)
17 \( 1 + (-0.362 + 1.77i)T + (-15.6 - 6.66i)T^{2} \)
19 \( 1 + (-6.15 - 1.64i)T + (16.4 + 9.5i)T^{2} \)
23 \( 1 + (-0.888 + 1.53i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.826 + 0.794i)T + (1.16 + 28.9i)T^{2} \)
31 \( 1 + (-2.41 - 5.36i)T + (-20.5 + 23.2i)T^{2} \)
37 \( 1 + (0.0929 - 0.920i)T + (-36.2 - 7.40i)T^{2} \)
41 \( 1 + (-0.394 - 2.77i)T + (-39.3 + 11.4i)T^{2} \)
43 \( 1 + (5.95 + 4.86i)T + (8.60 + 42.1i)T^{2} \)
47 \( 1 + (4.05 - 12.9i)T + (-38.6 - 26.6i)T^{2} \)
53 \( 1 + (6.38 - 7.20i)T + (-6.38 - 52.6i)T^{2} \)
59 \( 1 + (-5.15 + 4.38i)T + (9.46 - 58.2i)T^{2} \)
61 \( 1 + (6.86 + 2.29i)T + (48.7 + 36.6i)T^{2} \)
67 \( 1 + (4.08 + 4.42i)T + (-5.39 + 66.7i)T^{2} \)
71 \( 1 + (8.24 + 3.31i)T + (51.2 + 49.1i)T^{2} \)
73 \( 1 + (2.02 + 1.22i)T + (33.9 + 64.6i)T^{2} \)
79 \( 1 + (0.904 - 0.474i)T + (44.8 - 65.0i)T^{2} \)
83 \( 1 + (2.37 - 3.02i)T + (-19.8 - 80.5i)T^{2} \)
89 \( 1 + (-2.81 - 10.5i)T + (-77.0 + 44.5i)T^{2} \)
97 \( 1 + (-3.68 - 10.3i)T + (-75.1 + 61.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94422175690944611903492764357, −9.978068283792328686726457124423, −9.519543042612106790423342904005, −9.097527784625564404399265467279, −7.78017968343323667427823885861, −6.82137739664322791411154877222, −6.02802407936341172484911632471, −4.78817317097073535355833601969, −3.02649348616143264174693022942, −1.46010640085714755246973779948, 0.44092302674705273905915682896, 1.72076439723382593005403324978, 3.01525323592152700846237817267, 5.44012734439584188952165023109, 6.29635841856541434904486650417, 7.18966326243407843277889064394, 7.85129148883629875084018686640, 8.742864152277596530514765372132, 9.927609861574741108263368008216, 10.19182187592570606662063399462

Graph of the $Z$-function along the critical line