L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1 − 1.41i)3-s + 0.999i·4-s + (1.41 − 1.41i)5-s + (1.70 + 0.292i)6-s + (−1 + i)7-s + (−2.12 − 2.12i)8-s + (−1.00 + 2.82i)9-s + 2.00i·10-s + (2.82 + 2.82i)11-s + (1.41 − 0.999i)12-s − 1.41i·14-s + (−3.41 − 0.585i)15-s + 1.00·16-s + (−1.29 − 2.70i)18-s + (−1 − i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.577 − 0.816i)3-s + 0.499i·4-s + (0.632 − 0.632i)5-s + (0.696 + 0.119i)6-s + (−0.377 + 0.377i)7-s + (−0.750 − 0.750i)8-s + (−0.333 + 0.942i)9-s + 0.632i·10-s + (0.852 + 0.852i)11-s + (0.408 − 0.288i)12-s − 0.377i·14-s + (−0.881 − 0.151i)15-s + 0.250·16-s + (−0.304 − 0.638i)18-s + (−0.229 − 0.229i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.614 - 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.614 - 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.832435 + 0.406990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.832435 + 0.406990i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1 + 1.41i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.707 - 0.707i)T - 2iT^{2} \) |
| 5 | \( 1 + (-1.41 + 1.41i)T - 5iT^{2} \) |
| 7 | \( 1 + (1 - i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.82 - 2.82i)T + 11iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + (1 + i)T + 19iT^{2} \) |
| 23 | \( 1 - 8.48T + 23T^{2} \) |
| 29 | \( 1 - 2.82iT - 29T^{2} \) |
| 31 | \( 1 + (-5 - 5i)T + 31iT^{2} \) |
| 37 | \( 1 + (1 - i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1.41 + 1.41i)T - 41iT^{2} \) |
| 43 | \( 1 - 6iT - 43T^{2} \) |
| 47 | \( 1 + (-2.82 - 2.82i)T + 47iT^{2} \) |
| 53 | \( 1 + 5.65iT - 53T^{2} \) |
| 59 | \( 1 + (-2.82 - 2.82i)T + 59iT^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (-5 - 5i)T + 67iT^{2} \) |
| 71 | \( 1 + (2.82 - 2.82i)T - 71iT^{2} \) |
| 73 | \( 1 + (1 - i)T - 73iT^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 + 5.65i)T - 83iT^{2} \) |
| 89 | \( 1 + (9.89 + 9.89i)T + 89iT^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19990365024464267993970690110, −9.864343013257013424355181694414, −9.056163268291979144109190702399, −8.434294234077526747316891004007, −7.14141003972742684763235584438, −6.75660616510535113707480455451, −5.69794730910731047127424763801, −4.60827072143380032191079711651, −2.86027029231990694911627953365, −1.28217490816909952836313307976,
0.825172695563514558197423061919, 2.66679232346809366379394973186, 3.86625601007857624888927256146, 5.25512262109101644874096447763, 6.16030917518269674007320590691, 6.74557801224362246443472253505, 8.569844693455279759345536947452, 9.362461106491518400430780234348, 10.00695398618436938349196954213, 10.70046423313878735076250485387