L(s) = 1 | + (1.06 + 1.06i)2-s + 1.73·3-s + 0.267i·4-s + (−2.90 − 2.90i)5-s + (1.84 + 1.84i)6-s + (1.84 − 1.84i)8-s + 2.99·9-s − 6.19i·10-s + (0.779 − 0.779i)11-s + 0.464i·12-s + (−5.03 − 5.03i)15-s + 4.46·16-s + (3.19 + 3.19i)18-s + (0.779 − 0.779i)20-s + 1.66·22-s + ⋯ |
L(s) = 1 | + (0.752 + 0.752i)2-s + 1.00·3-s + 0.133i·4-s + (−1.30 − 1.30i)5-s + (0.752 + 0.752i)6-s + (0.652 − 0.652i)8-s + 0.999·9-s − 1.95i·10-s + (0.235 − 0.235i)11-s + 0.133i·12-s + (−1.30 − 1.30i)15-s + 1.11·16-s + (0.752 + 0.752i)18-s + (0.174 − 0.174i)20-s + 0.353·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.45451 - 0.363436i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.45451 - 0.363436i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 1.73T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-1.06 - 1.06i)T + 2iT^{2} \) |
| 5 | \( 1 + (2.90 + 2.90i)T + 5iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + (-0.779 + 0.779i)T - 11iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 + (-7.16 - 7.16i)T + 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (6.59 - 6.59i)T - 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (10.8 - 10.8i)T - 59iT^{2} \) |
| 61 | \( 1 + 13.8T + 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 + (-3.47 - 3.47i)T + 71iT^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 + (-9.29 - 9.29i)T + 83iT^{2} \) |
| 89 | \( 1 + (-12.9 + 12.9i)T - 89iT^{2} \) |
| 97 | \( 1 - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96153468768485494933108516117, −9.660891145136794710849712065911, −8.884906043216554664008814813249, −7.953334757938382006662711115680, −7.47341803071928908747098009077, −6.23679127626334903266748623938, −4.87280803711042296969604880660, −4.32898921763266576370035679932, −3.37822004936429757339339350209, −1.22356552749257777189594829339,
2.19175530138706615587672789831, 3.21047575916616932078415665418, 3.77806944038316498668913512194, 4.67847535034410811164496398790, 6.57065309956597167510790212615, 7.57199594608092979575865022343, 7.973193756415000563126603972191, 9.197525970115304506128053775749, 10.49302140225007285781647899654, 10.94753954845737971996985281060