# Properties

 Label 2-507-39.2-c1-0-22 Degree $2$ Conductor $507$ Sign $0.466 - 0.884i$ Analytic cond. $4.04841$ Root an. cond. $2.01206$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + (0.866 + 1.5i)3-s + (1.73 + i)4-s + (2.86 − 0.767i)7-s + (−1.5 + 2.59i)9-s + 3.46i·12-s + (1.99 + 3.46i)16-s + (−2.09 − 7.83i)19-s + (3.63 + 3.63i)21-s − 5i·25-s − 5.19·27-s + (5.73 + 1.53i)28-s + (−7.83 + 7.83i)31-s + (−5.19 + 3i)36-s + (−0.562 + 2.09i)37-s + (1.5 + 0.866i)43-s + ⋯
 L(s)  = 1 + (0.499 + 0.866i)3-s + (0.866 + 0.5i)4-s + (1.08 − 0.290i)7-s + (−0.5 + 0.866i)9-s + 0.999i·12-s + (0.499 + 0.866i)16-s + (−0.481 − 1.79i)19-s + (0.792 + 0.792i)21-s − i·25-s − 1.00·27-s + (1.08 + 0.290i)28-s + (−1.40 + 1.40i)31-s + (−0.866 + 0.5i)36-s + (−0.0924 + 0.344i)37-s + (0.228 + 0.132i)43-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.466 - 0.884i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.466 - 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$507$$    =    $$3 \cdot 13^{2}$$ Sign: $0.466 - 0.884i$ Analytic conductor: $$4.04841$$ Root analytic conductor: $$2.01206$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{507} (80, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 507,\ (\ :1/2),\ 0.466 - 0.884i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.84819 + 1.11517i$$ $$L(\frac12)$$ $$\approx$$ $$1.84819 + 1.11517i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 + (-0.866 - 1.5i)T$$
13 $$1$$
good2 $$1 + (-1.73 - i)T^{2}$$
5 $$1 + 5iT^{2}$$
7 $$1 + (-2.86 + 0.767i)T + (6.06 - 3.5i)T^{2}$$
11 $$1 + (9.52 + 5.5i)T^{2}$$
17 $$1 + (-8.5 - 14.7i)T^{2}$$
19 $$1 + (2.09 + 7.83i)T + (-16.4 + 9.5i)T^{2}$$
23 $$1 + (-11.5 + 19.9i)T^{2}$$
29 $$1 + (14.5 - 25.1i)T^{2}$$
31 $$1 + (7.83 - 7.83i)T - 31iT^{2}$$
37 $$1 + (0.562 - 2.09i)T + (-32.0 - 18.5i)T^{2}$$
41 $$1 + (-35.5 - 20.5i)T^{2}$$
43 $$1 + (-1.5 - 0.866i)T + (21.5 + 37.2i)T^{2}$$
47 $$1 - 47iT^{2}$$
53 $$1 - 53T^{2}$$
59 $$1 + (-51.0 + 29.5i)T^{2}$$
61 $$1 + (-4.33 + 7.5i)T + (-30.5 - 52.8i)T^{2}$$
67 $$1 + (0.767 + 0.205i)T + (58.0 + 33.5i)T^{2}$$
71 $$1 + (61.4 - 35.5i)T^{2}$$
73 $$1 + (9.36 + 9.36i)T + 73iT^{2}$$
79 $$1 - 12.1T + 79T^{2}$$
83 $$1 + 83iT^{2}$$
89 $$1 + (77.0 + 44.5i)T^{2}$$
97 $$1 + (-4.40 - 16.4i)T + (-84.0 + 48.5i)T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.94955453179266433029681920133, −10.47427040590147717726679354057, −9.140620272523342520197468588336, −8.398376103433759317428709731094, −7.59545528227057060056025370739, −6.63857292807518547480113441025, −5.17789256277270035477392217238, −4.32240127111347398490904268138, −3.12054168560673643210740464439, −2.02110980973437629670988681889, 1.49099421647136330000285365921, 2.25594546526124639594162286500, 3.73642793903640894310048694360, 5.44782259795638836354684685465, 6.11197939753011840303256724559, 7.31928289946748772113047842652, 7.84666991913596832879564965631, 8.810177126042682205642821696353, 9.890016422493490846860637543265, 10.97805029075021376238185958940