Properties

Label 2-507-39.11-c1-0-29
Degree $2$
Conductor $507$
Sign $0.829 - 0.557i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.31 + 0.619i)2-s + (1.64 − 0.529i)3-s + (3.23 + 1.86i)4-s + (−1.69 + 1.69i)5-s + (4.14 − 0.202i)6-s + (−0.366 − 1.36i)7-s + (2.93 + 2.93i)8-s + (2.43 − 1.74i)9-s + (−4.96 + 2.86i)10-s + (−0.453 + 1.69i)11-s + (6.31 + 1.36i)12-s − 3.38i·14-s + (−1.89 + 3.68i)15-s + (1.23 + 2.13i)16-s + (1.07 − 1.85i)17-s + (6.72 − 2.52i)18-s + ⋯
L(s)  = 1  + (1.63 + 0.438i)2-s + (0.952 − 0.305i)3-s + (1.61 + 0.933i)4-s + (−0.757 + 0.757i)5-s + (1.69 − 0.0826i)6-s + (−0.138 − 0.516i)7-s + (1.03 + 1.03i)8-s + (0.813 − 0.582i)9-s + (−1.56 + 0.906i)10-s + (−0.136 + 0.510i)11-s + (1.82 + 0.394i)12-s − 0.904i·14-s + (−0.489 + 0.952i)15-s + (0.308 + 0.533i)16-s + (0.260 − 0.450i)17-s + (1.58 − 0.595i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.557i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.829 - 0.557i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $0.829 - 0.557i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 0.829 - 0.557i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.86961 + 1.17974i\)
\(L(\frac12)\) \(\approx\) \(3.86961 + 1.17974i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.64 + 0.529i)T \)
13 \( 1 \)
good2 \( 1 + (-2.31 - 0.619i)T + (1.73 + i)T^{2} \)
5 \( 1 + (1.69 - 1.69i)T - 5iT^{2} \)
7 \( 1 + (0.366 + 1.36i)T + (-6.06 + 3.5i)T^{2} \)
11 \( 1 + (0.453 - 1.69i)T + (-9.52 - 5.5i)T^{2} \)
17 \( 1 + (-1.07 + 1.85i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1 - 0.267i)T + (16.4 - 9.5i)T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (4.79 - 2.76i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + (4.46 + 4.46i)T + 31iT^{2} \)
37 \( 1 + (6.59 + 1.76i)T + (32.0 + 18.5i)T^{2} \)
41 \( 1 + (0.619 + 0.166i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (7.09 + 4.09i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (-6.77 - 6.77i)T + 47iT^{2} \)
53 \( 1 - 4.62iT - 53T^{2} \)
59 \( 1 + (-4.62 + 1.23i)T + (51.0 - 29.5i)T^{2} \)
61 \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.26 - 8.46i)T + (-58.0 - 33.5i)T^{2} \)
71 \( 1 + (-1.23 - 4.62i)T + (-61.4 + 35.5i)T^{2} \)
73 \( 1 + (-6.09 + 6.09i)T - 73iT^{2} \)
79 \( 1 - 2T + 79T^{2} \)
83 \( 1 + (-1.23 + 1.23i)T - 83iT^{2} \)
89 \( 1 + (2.60 - 9.70i)T + (-77.0 - 44.5i)T^{2} \)
97 \( 1 + (-12.5 + 3.36i)T + (84.0 - 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.31627273869237189093481462212, −10.29334354555194532395531522087, −9.079193810391954138956357729970, −7.64584705448595454497335009114, −7.31074400578901982557238825659, −6.54628453210922957432931638750, −5.19821878737550460437816665727, −3.93150212020858412277039653489, −3.51029497278680775378630322994, −2.32710235232245273061248473938, 1.95421857043950002391161580034, 3.23103242293428986240220312769, 3.92077542360034668922096108526, 4.86405098504529935513702706169, 5.72517074668736165203567375260, 7.05971129101326122882004904158, 8.278288512685777570194857884590, 8.883400775987382794437396948571, 10.16382272819819072201312570804, 11.10392364382676774045509321863

Graph of the $Z$-function along the critical line