Properties

Label 2-507-169.155-c1-0-3
Degree $2$
Conductor $507$
Sign $-0.986 - 0.162i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.683 + 0.472i)2-s + (−0.885 + 0.464i)3-s + (−0.464 − 1.22i)4-s + (−0.740 + 0.836i)5-s + (−0.824 − 0.100i)6-s + (−0.471 + 1.91i)7-s + (0.658 − 2.67i)8-s + (0.568 − 0.822i)9-s + (−0.901 + 0.222i)10-s + (−3.09 + 2.13i)11-s + (0.980 + 0.868i)12-s + (−3.00 + 1.99i)13-s + (−1.22 + 1.08i)14-s + (0.267 − 1.08i)15-s + (−0.249 + 0.221i)16-s + (−2.25 − 0.556i)17-s + ⋯
L(s)  = 1  + (0.483 + 0.333i)2-s + (−0.511 + 0.268i)3-s + (−0.232 − 0.612i)4-s + (−0.331 + 0.373i)5-s + (−0.336 − 0.0408i)6-s + (−0.178 + 0.723i)7-s + (0.232 − 0.944i)8-s + (0.189 − 0.274i)9-s + (−0.285 + 0.0702i)10-s + (−0.932 + 0.643i)11-s + (0.282 + 0.250i)12-s + (−0.832 + 0.554i)13-s + (−0.327 + 0.290i)14-s + (0.0690 − 0.280i)15-s + (−0.0624 + 0.0553i)16-s + (−0.547 − 0.134i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.162i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.986 - 0.162i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $-0.986 - 0.162i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (493, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ -0.986 - 0.162i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0343310 + 0.418486i\)
\(L(\frac12)\) \(\approx\) \(0.0343310 + 0.418486i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.885 - 0.464i)T \)
13 \( 1 + (3.00 - 1.99i)T \)
good2 \( 1 + (-0.683 - 0.472i)T + (0.709 + 1.87i)T^{2} \)
5 \( 1 + (0.740 - 0.836i)T + (-0.602 - 4.96i)T^{2} \)
7 \( 1 + (0.471 - 1.91i)T + (-6.19 - 3.25i)T^{2} \)
11 \( 1 + (3.09 - 2.13i)T + (3.90 - 10.2i)T^{2} \)
17 \( 1 + (2.25 + 0.556i)T + (15.0 + 7.90i)T^{2} \)
19 \( 1 + 0.681iT - 19T^{2} \)
23 \( 1 + 4.21T + 23T^{2} \)
29 \( 1 + (2.17 - 3.15i)T + (-10.2 - 27.1i)T^{2} \)
31 \( 1 + (-0.413 - 0.0502i)T + (30.0 + 7.41i)T^{2} \)
37 \( 1 + (2.75 + 0.335i)T + (35.9 + 8.85i)T^{2} \)
41 \( 1 + (3.87 + 7.38i)T + (-23.2 + 33.7i)T^{2} \)
43 \( 1 + (-0.129 - 1.06i)T + (-41.7 + 10.2i)T^{2} \)
47 \( 1 + (7.89 + 2.99i)T + (35.1 + 31.1i)T^{2} \)
53 \( 1 + (-11.6 - 2.87i)T + (46.9 + 24.6i)T^{2} \)
59 \( 1 + (3.50 - 3.95i)T + (-7.11 - 58.5i)T^{2} \)
61 \( 1 + (-13.9 + 3.43i)T + (54.0 - 28.3i)T^{2} \)
67 \( 1 + (-3.93 - 1.49i)T + (50.1 + 44.4i)T^{2} \)
71 \( 1 + (-2.85 - 5.44i)T + (-40.3 + 58.4i)T^{2} \)
73 \( 1 + (-5.72 + 3.95i)T + (25.8 - 68.2i)T^{2} \)
79 \( 1 + (-0.277 + 0.731i)T + (-59.1 - 52.3i)T^{2} \)
83 \( 1 + (1.19 - 2.28i)T + (-47.1 - 68.3i)T^{2} \)
89 \( 1 - 0.226iT - 89T^{2} \)
97 \( 1 + (10.8 + 12.1i)T + (-11.6 + 96.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32735389799651275320353301022, −10.36843459679749803010077065984, −9.740875127237530462122730802061, −8.813822450456208818851399836849, −7.34681547652734983506545323231, −6.69377528388962479705403342747, −5.51769523928778776316241922756, −4.97581099573878374614276772079, −3.85973330059001961755923762735, −2.21766533457630723909575082921, 0.21372161197728566324815999926, 2.43608729899519046869612057985, 3.71458930507660943628756473006, 4.67500348254802929045895559376, 5.54616785880936528725988134944, 6.86836484042543226375722153617, 7.944628969067545256851634925850, 8.322368484335562807395251872179, 9.854525328787747400794525090243, 10.67106896760536185577992626241

Graph of the $Z$-function along the critical line