Properties

Label 2-507-169.153-c1-0-9
Degree $2$
Conductor $507$
Sign $-0.803 - 0.594i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.123 + 1.52i)2-s + (0.845 + 0.534i)3-s + (−0.350 − 0.0570i)4-s + (−0.731 + 0.826i)5-s + (−0.922 + 1.22i)6-s + (−0.602 − 0.578i)7-s + (−0.604 + 2.45i)8-s + (0.428 + 0.903i)9-s + (−1.17 − 1.22i)10-s + (5.24 + 2.49i)11-s + (−0.266 − 0.235i)12-s + (3.38 − 1.23i)13-s + (0.959 − 0.850i)14-s + (−1.05 + 0.307i)15-s + (−4.34 − 1.45i)16-s + (−4.41 + 4.59i)17-s + ⋯
L(s)  = 1  + (−0.0873 + 1.08i)2-s + (0.487 + 0.308i)3-s + (−0.175 − 0.0285i)4-s + (−0.327 + 0.369i)5-s + (−0.376 + 0.500i)6-s + (−0.227 − 0.218i)7-s + (−0.213 + 0.866i)8-s + (0.142 + 0.301i)9-s + (−0.371 − 0.386i)10-s + (1.58 + 0.750i)11-s + (−0.0768 − 0.0680i)12-s + (0.939 − 0.343i)13-s + (0.256 − 0.227i)14-s + (−0.273 + 0.0792i)15-s + (−1.08 − 0.362i)16-s + (−1.07 + 1.11i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 - 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.803 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $-0.803 - 0.594i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (322, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ -0.803 - 0.594i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.514733 + 1.56104i\)
\(L(\frac12)\) \(\approx\) \(0.514733 + 1.56104i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.845 - 0.534i)T \)
13 \( 1 + (-3.38 + 1.23i)T \)
good2 \( 1 + (0.123 - 1.52i)T + (-1.97 - 0.320i)T^{2} \)
5 \( 1 + (0.731 - 0.826i)T + (-0.602 - 4.96i)T^{2} \)
7 \( 1 + (0.602 + 0.578i)T + (0.281 + 6.99i)T^{2} \)
11 \( 1 + (-5.24 - 2.49i)T + (6.95 + 8.52i)T^{2} \)
17 \( 1 + (4.41 - 4.59i)T + (-0.684 - 16.9i)T^{2} \)
19 \( 1 + (3.82 + 2.20i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.20 + 5.55i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.71 - 0.138i)T + (28.6 + 4.65i)T^{2} \)
31 \( 1 + (0.273 + 0.0331i)T + (30.0 + 7.41i)T^{2} \)
37 \( 1 + (-1.31 - 3.07i)T + (-25.6 + 26.6i)T^{2} \)
41 \( 1 + (-3.85 + 6.09i)T + (-17.5 - 37.0i)T^{2} \)
43 \( 1 + (2.75 + 1.17i)T + (29.7 + 31.0i)T^{2} \)
47 \( 1 + (-10.0 - 3.79i)T + (35.1 + 31.1i)T^{2} \)
53 \( 1 + (4.80 + 1.18i)T + (46.9 + 24.6i)T^{2} \)
59 \( 1 + (-3.08 - 9.23i)T + (-47.1 + 35.4i)T^{2} \)
61 \( 1 + (0.577 - 1.99i)T + (-51.5 - 32.6i)T^{2} \)
67 \( 1 + (0.924 + 5.68i)T + (-63.5 + 21.2i)T^{2} \)
71 \( 1 + (-4.69 - 0.189i)T + (70.7 + 5.71i)T^{2} \)
73 \( 1 + (-7.80 + 5.39i)T + (25.8 - 68.2i)T^{2} \)
79 \( 1 + (-4.32 + 11.4i)T + (-59.1 - 52.3i)T^{2} \)
83 \( 1 + (0.413 - 0.788i)T + (-47.1 - 68.3i)T^{2} \)
89 \( 1 + (-9.21 + 5.32i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-13.3 + 2.73i)T + (89.2 - 38.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07575777595604891028114196091, −10.41779887752402612453066399937, −8.994821607649803524894295043705, −8.646798677385639165416666311173, −7.55503238949748111426791686705, −6.61148681446091201797285366780, −6.20247514319209656212467633182, −4.52660562181707919953320473046, −3.71528759900942507435945337402, −2.11295392288527036543124007232, 1.02094192050254084207606941982, 2.25925866722772654166318671694, 3.57178942848606837583532979359, 4.21437049185244699965862656708, 6.17254250307753978874866043384, 6.74191602879502545966464858147, 8.154767891626248383482427544427, 9.082618462406497663518026407519, 9.477646909464230495761467952327, 10.81450058607858719148169444208

Graph of the $Z$-function along the critical line