L(s) = 1 | + (0.222 − 0.385i)2-s + (−0.5 + 0.866i)3-s + (0.900 + 1.56i)4-s + 0.246·5-s + (0.222 + 0.385i)6-s + (0.876 + 1.51i)7-s + 1.69·8-s + (−0.499 − 0.866i)9-s + (0.0549 − 0.0951i)10-s + (2.82 − 4.89i)11-s − 1.80·12-s + 0.780·14-s + (−0.123 + 0.213i)15-s + (−1.42 + 2.46i)16-s + (1.90 + 3.29i)17-s − 0.445·18-s + ⋯ |
L(s) = 1 | + (0.157 − 0.272i)2-s + (−0.288 + 0.499i)3-s + (0.450 + 0.780i)4-s + 0.110·5-s + (0.0908 + 0.157i)6-s + (0.331 + 0.573i)7-s + 0.598·8-s + (−0.166 − 0.288i)9-s + (0.0173 − 0.0301i)10-s + (0.852 − 1.47i)11-s − 0.520·12-s + 0.208·14-s + (−0.0318 + 0.0552i)15-s + (−0.356 + 0.617i)16-s + (0.461 + 0.798i)17-s − 0.104·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 - 0.826i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.562 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51619 + 0.801738i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51619 + 0.801738i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.222 + 0.385i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 - 0.246T + 5T^{2} \) |
| 7 | \( 1 + (-0.876 - 1.51i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.82 + 4.89i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.90 - 3.29i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.79 - 4.83i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.17 - 7.22i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.96 + 5.14i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 5.26T + 31T^{2} \) |
| 37 | \( 1 + (-1.59 + 2.76i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.222 + 0.385i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.856 + 1.48i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6.73T + 47T^{2} \) |
| 53 | \( 1 + 1.06T + 53T^{2} \) |
| 59 | \( 1 + (6.85 + 11.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.25 - 7.37i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.98 + 5.16i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.85 + 4.95i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 7.35T + 73T^{2} \) |
| 79 | \( 1 - 4.45T + 79T^{2} \) |
| 83 | \( 1 - 10.1T + 83T^{2} \) |
| 89 | \( 1 + (-0.0685 + 0.118i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.84 + 11.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32994283511678278482820052023, −10.30221179876053469919539714584, −9.303106518630508880358657356934, −8.317337646291050993031132702644, −7.63997706323842270102191910811, −6.10793446037458020816691658406, −5.63644624154163384996238472288, −3.93191154327233013365840452052, −3.42991587260895836032164602708, −1.79008867974181324963761932205,
1.14445736488256366674524030737, 2.35576055467604213561843172810, 4.34546275082258980487243656190, 5.13866452189399809355512809703, 6.31251014901934705108425064992, 7.08055925495974019205623415269, 7.61078857551471244440054045340, 9.151369362851932420025304144971, 9.991282680768658028500920692114, 10.75896435302165463211764747916