Properties

Label 2-507-13.9-c1-0-8
Degree $2$
Conductor $507$
Sign $0.562 - 0.826i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.222 − 0.385i)2-s + (−0.5 + 0.866i)3-s + (0.900 + 1.56i)4-s + 0.246·5-s + (0.222 + 0.385i)6-s + (0.876 + 1.51i)7-s + 1.69·8-s + (−0.499 − 0.866i)9-s + (0.0549 − 0.0951i)10-s + (2.82 − 4.89i)11-s − 1.80·12-s + 0.780·14-s + (−0.123 + 0.213i)15-s + (−1.42 + 2.46i)16-s + (1.90 + 3.29i)17-s − 0.445·18-s + ⋯
L(s)  = 1  + (0.157 − 0.272i)2-s + (−0.288 + 0.499i)3-s + (0.450 + 0.780i)4-s + 0.110·5-s + (0.0908 + 0.157i)6-s + (0.331 + 0.573i)7-s + 0.598·8-s + (−0.166 − 0.288i)9-s + (0.0173 − 0.0301i)10-s + (0.852 − 1.47i)11-s − 0.520·12-s + 0.208·14-s + (−0.0318 + 0.0552i)15-s + (−0.356 + 0.617i)16-s + (0.461 + 0.798i)17-s − 0.104·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 - 0.826i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.562 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $0.562 - 0.826i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 0.562 - 0.826i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.51619 + 0.801738i\)
\(L(\frac12)\) \(\approx\) \(1.51619 + 0.801738i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.5 - 0.866i)T \)
13 \( 1 \)
good2 \( 1 + (-0.222 + 0.385i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 - 0.246T + 5T^{2} \)
7 \( 1 + (-0.876 - 1.51i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2.82 + 4.89i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-1.90 - 3.29i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.79 - 4.83i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (4.17 - 7.22i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-2.96 + 5.14i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 5.26T + 31T^{2} \)
37 \( 1 + (-1.59 + 2.76i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.222 + 0.385i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (0.856 + 1.48i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 - 6.73T + 47T^{2} \)
53 \( 1 + 1.06T + 53T^{2} \)
59 \( 1 + (6.85 + 11.8i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-4.25 - 7.37i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-2.98 + 5.16i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2.85 + 4.95i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + 7.35T + 73T^{2} \)
79 \( 1 - 4.45T + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 + (-0.0685 + 0.118i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (6.84 + 11.8i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32994283511678278482820052023, −10.30221179876053469919539714584, −9.303106518630508880358657356934, −8.317337646291050993031132702644, −7.63997706323842270102191910811, −6.10793446037458020816691658406, −5.63644624154163384996238472288, −3.93191154327233013365840452052, −3.42991587260895836032164602708, −1.79008867974181324963761932205, 1.14445736488256366674524030737, 2.35576055467604213561843172810, 4.34546275082258980487243656190, 5.13866452189399809355512809703, 6.31251014901934705108425064992, 7.08055925495974019205623415269, 7.61078857551471244440054045340, 9.151369362851932420025304144971, 9.991282680768658028500920692114, 10.75896435302165463211764747916

Graph of the $Z$-function along the critical line