L(s) = 1 | − 2.34i·2-s + 3·3-s + 2.49·4-s − 15.3i·5-s − 7.04i·6-s − 10.1i·7-s − 24.6i·8-s + 9·9-s − 36.1·10-s + 15.0i·11-s + 7.47·12-s − 23.7·14-s − 46.1i·15-s − 37.8·16-s − 90.8·17-s − 21.1i·18-s + ⋯ |
L(s) = 1 | − 0.829i·2-s + 0.577·3-s + 0.311·4-s − 1.37i·5-s − 0.479i·6-s − 0.547i·7-s − 1.08i·8-s + 0.333·9-s − 1.14·10-s + 0.412i·11-s + 0.179·12-s − 0.453·14-s − 0.795i·15-s − 0.591·16-s − 1.29·17-s − 0.276i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0304i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0304i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.394448957\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.394448957\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.34iT - 8T^{2} \) |
| 5 | \( 1 + 15.3iT - 125T^{2} \) |
| 7 | \( 1 + 10.1iT - 343T^{2} \) |
| 11 | \( 1 - 15.0iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 90.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 114. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 75.7T + 1.21e4T^{2} \) |
| 29 | \( 1 - 214.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 284. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 358. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 313. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 296.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 316. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 163.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 254. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 935.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 240. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 947. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 430. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 496.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 392. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 979. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 553. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16977202749978132741821658477, −9.101634294233635605857246318450, −8.618853021959447514557278261650, −7.34265481538289713583307822320, −6.53721181837401168475911812884, −4.83747331131706665565132192049, −4.21059989760897578783106922866, −2.85753515568343167059604329901, −1.71949771461530087667320141363, −0.64194401174575200849422610276,
2.14616693337637971555983709280, 2.84839065352901469629526022005, 4.18895043133011791050541733553, 5.90310315407188036536438470854, 6.30844984314793792008262075826, 7.35596323036126915503187222738, 8.008928807824336448030917062571, 8.931087301953767370050571422708, 10.09048755029796012538414971923, 10.93980406757771899454872003191