L(s) = 1 | − 2.41i·2-s + 3-s − 3.82·4-s + 2.82i·5-s − 2.41i·6-s + 2.82i·7-s + 4.41i·8-s + 9-s + 6.82·10-s + 2i·11-s − 3.82·12-s + 6.82·14-s + 2.82i·15-s + 2.99·16-s + 3.65·17-s − 2.41i·18-s + ⋯ |
L(s) = 1 | − 1.70i·2-s + 0.577·3-s − 1.91·4-s + 1.26i·5-s − 0.985i·6-s + 1.06i·7-s + 1.56i·8-s + 0.333·9-s + 2.15·10-s + 0.603i·11-s − 1.10·12-s + 1.82·14-s + 0.730i·15-s + 0.749·16-s + 0.886·17-s − 0.569i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.45288 - 0.439897i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45288 - 0.439897i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.41iT - 2T^{2} \) |
| 5 | \( 1 - 2.82iT - 5T^{2} \) |
| 7 | \( 1 - 2.82iT - 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 17 | \( 1 - 3.65T + 17T^{2} \) |
| 19 | \( 1 - 2.82iT - 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 + 6.82iT - 31T^{2} \) |
| 37 | \( 1 + 3.65iT - 37T^{2} \) |
| 41 | \( 1 - 10.8iT - 41T^{2} \) |
| 43 | \( 1 + 9.65T + 43T^{2} \) |
| 47 | \( 1 - 0.343iT - 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 - 3.65iT - 59T^{2} \) |
| 61 | \( 1 + 9.31T + 61T^{2} \) |
| 67 | \( 1 - 1.17iT - 67T^{2} \) |
| 71 | \( 1 - 2iT - 71T^{2} \) |
| 73 | \( 1 + 11.6iT - 73T^{2} \) |
| 79 | \( 1 - 11.3T + 79T^{2} \) |
| 83 | \( 1 + 7.65iT - 83T^{2} \) |
| 89 | \( 1 + 9.17iT - 89T^{2} \) |
| 97 | \( 1 + 7.65iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84518768479062398881798214587, −10.00091177361788799399358362421, −9.498651528362319813662701871113, −8.473076031815888671320834460009, −7.39849352577358099294745336808, −6.10226728422057323485812251585, −4.70352466768922871050771490419, −3.38869672699341469396418259357, −2.79596718281181858588101229083, −1.80791716948160447606819727956,
0.935288527558163476420023430515, 3.54308177137946858808384954457, 4.71066652253955467134733220451, 5.30581934057749189589258873043, 6.62462002213000556669800919970, 7.38483113781490840572158275796, 8.282427084307224748968113301023, 8.780134153246329571338444612932, 9.622218269578828416285685392731, 10.73780780353421547165672188163