Properties

Label 2-507-1.1-c3-0-65
Degree $2$
Conductor $507$
Sign $-1$
Analytic cond. $29.9139$
Root an. cond. $5.46936$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.213·2-s + 3·3-s − 7.95·4-s + 15.3·5-s + 0.641·6-s − 32.3·7-s − 3.40·8-s + 9·9-s + 3.27·10-s + 29.5·11-s − 23.8·12-s − 6.92·14-s + 46.0·15-s + 62.9·16-s − 78.1·17-s + 1.92·18-s + 10.6·19-s − 122.·20-s − 97.1·21-s + 6.32·22-s − 26.8·23-s − 10.2·24-s + 110.·25-s + 27·27-s + 257.·28-s − 190.·29-s + 9.83·30-s + ⋯
L(s)  = 1  + 0.0755·2-s + 0.577·3-s − 0.994·4-s + 1.37·5-s + 0.0436·6-s − 1.74·7-s − 0.150·8-s + 0.333·9-s + 0.103·10-s + 0.811·11-s − 0.574·12-s − 0.132·14-s + 0.792·15-s + 0.982·16-s − 1.11·17-s + 0.0251·18-s + 0.128·19-s − 1.36·20-s − 1.00·21-s + 0.0612·22-s − 0.243·23-s − 0.0869·24-s + 0.882·25-s + 0.192·27-s + 1.73·28-s − 1.22·29-s + 0.0598·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(29.9139\)
Root analytic conductor: \(5.46936\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 507,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
13 \( 1 \)
good2 \( 1 - 0.213T + 8T^{2} \)
5 \( 1 - 15.3T + 125T^{2} \)
7 \( 1 + 32.3T + 343T^{2} \)
11 \( 1 - 29.5T + 1.33e3T^{2} \)
17 \( 1 + 78.1T + 4.91e3T^{2} \)
19 \( 1 - 10.6T + 6.85e3T^{2} \)
23 \( 1 + 26.8T + 1.21e4T^{2} \)
29 \( 1 + 190.T + 2.43e4T^{2} \)
31 \( 1 + 128.T + 2.97e4T^{2} \)
37 \( 1 + 379.T + 5.06e4T^{2} \)
41 \( 1 + 464.T + 6.89e4T^{2} \)
43 \( 1 - 322.T + 7.95e4T^{2} \)
47 \( 1 + 248.T + 1.03e5T^{2} \)
53 \( 1 - 740.T + 1.48e5T^{2} \)
59 \( 1 + 340.T + 2.05e5T^{2} \)
61 \( 1 + 590.T + 2.26e5T^{2} \)
67 \( 1 + 340.T + 3.00e5T^{2} \)
71 \( 1 + 36.2T + 3.57e5T^{2} \)
73 \( 1 + 164.T + 3.89e5T^{2} \)
79 \( 1 + 327.T + 4.93e5T^{2} \)
83 \( 1 + 1.40e3T + 5.71e5T^{2} \)
89 \( 1 - 736.T + 7.04e5T^{2} \)
97 \( 1 - 1.49e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.830628141224935646256469721190, −9.105186734350332148537019929154, −8.865635419859896923804469691028, −7.13264498436737702351484202719, −6.28763258395917733760005805906, −5.45451904917329249283037474091, −4.04538958921835453191936902635, −3.16566454193906547594355214523, −1.78997279709947531183025095688, 0, 1.78997279709947531183025095688, 3.16566454193906547594355214523, 4.04538958921835453191936902635, 5.45451904917329249283037474091, 6.28763258395917733760005805906, 7.13264498436737702351484202719, 8.865635419859896923804469691028, 9.105186734350332148537019929154, 9.830628141224935646256469721190

Graph of the $Z$-function along the critical line