L(s) = 1 | − 2.35·2-s − 3-s + 3.55·4-s − 3.69·5-s + 2.35·6-s + 0.801·7-s − 3.66·8-s + 9-s + 8.70·10-s + 2.85·11-s − 3.55·12-s − 1.89·14-s + 3.69·15-s + 1.52·16-s + 2.93·17-s − 2.35·18-s + 2.44·19-s − 13.1·20-s − 0.801·21-s − 6.71·22-s − 7.78·23-s + 3.66·24-s + 8.63·25-s − 27-s + 2.85·28-s + 3.85·29-s − 8.70·30-s + ⋯ |
L(s) = 1 | − 1.66·2-s − 0.577·3-s + 1.77·4-s − 1.65·5-s + 0.962·6-s + 0.303·7-s − 1.29·8-s + 0.333·9-s + 2.75·10-s + 0.859·11-s − 1.02·12-s − 0.505·14-s + 0.953·15-s + 0.381·16-s + 0.712·17-s − 0.555·18-s + 0.560·19-s − 2.93·20-s − 0.174·21-s − 1.43·22-s − 1.62·23-s + 0.748·24-s + 1.72·25-s − 0.192·27-s + 0.538·28-s + 0.715·29-s − 1.58·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.35T + 2T^{2} \) |
| 5 | \( 1 + 3.69T + 5T^{2} \) |
| 7 | \( 1 - 0.801T + 7T^{2} \) |
| 11 | \( 1 - 2.85T + 11T^{2} \) |
| 17 | \( 1 - 2.93T + 17T^{2} \) |
| 19 | \( 1 - 2.44T + 19T^{2} \) |
| 23 | \( 1 + 7.78T + 23T^{2} \) |
| 29 | \( 1 - 3.85T + 29T^{2} \) |
| 31 | \( 1 + 2.34T + 31T^{2} \) |
| 37 | \( 1 + 7.44T + 37T^{2} \) |
| 41 | \( 1 - 0.850T + 41T^{2} \) |
| 43 | \( 1 + 1.61T + 43T^{2} \) |
| 47 | \( 1 + 2.44T + 47T^{2} \) |
| 53 | \( 1 + 9.96T + 53T^{2} \) |
| 59 | \( 1 - 5.38T + 59T^{2} \) |
| 61 | \( 1 + 13.2T + 61T^{2} \) |
| 67 | \( 1 + 14.3T + 67T^{2} \) |
| 71 | \( 1 + 8.12T + 71T^{2} \) |
| 73 | \( 1 - 11.8T + 73T^{2} \) |
| 79 | \( 1 - 5.40T + 79T^{2} \) |
| 83 | \( 1 + 7.04T + 83T^{2} \) |
| 89 | \( 1 + 1.13T + 89T^{2} \) |
| 97 | \( 1 - 5.94T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44951523846225797024582885957, −9.571202944388799864132972588980, −8.546423511461009828464401955907, −7.86195856353724085969307969484, −7.25093712131391843891172943852, −6.24580594389555839620556704293, −4.64065634741312102357396661084, −3.46704534565565412969661382740, −1.43034676041880394595126755240, 0,
1.43034676041880394595126755240, 3.46704534565565412969661382740, 4.64065634741312102357396661084, 6.24580594389555839620556704293, 7.25093712131391843891172943852, 7.86195856353724085969307969484, 8.546423511461009828464401955907, 9.571202944388799864132972588980, 10.44951523846225797024582885957