Properties

Label 2-507-1.1-c1-0-3
Degree $2$
Conductor $507$
Sign $1$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 3.46·5-s + 1.73·7-s + 9-s − 3.46·11-s + 2·12-s − 3.46·15-s + 4·16-s + 3.46·19-s − 6.92·20-s − 1.73·21-s + 6·23-s + 6.99·25-s − 27-s − 3.46·28-s + 6·29-s + 1.73·31-s + 3.46·33-s + 5.99·35-s − 2·36-s + 6.92·41-s + 43-s + 6.92·44-s + 3.46·45-s − 3.46·47-s − 4·48-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 1.54·5-s + 0.654·7-s + 0.333·9-s − 1.04·11-s + 0.577·12-s − 0.894·15-s + 16-s + 0.794·19-s − 1.54·20-s − 0.377·21-s + 1.25·23-s + 1.39·25-s − 0.192·27-s − 0.654·28-s + 1.11·29-s + 0.311·31-s + 0.603·33-s + 1.01·35-s − 0.333·36-s + 1.08·41-s + 0.152·43-s + 1.04·44-s + 0.516·45-s − 0.505·47-s − 0.577·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.309732006\)
\(L(\frac12)\) \(\approx\) \(1.309732006\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
13 \( 1 \)
good2 \( 1 + 2T^{2} \)
5 \( 1 - 3.46T + 5T^{2} \)
7 \( 1 - 1.73T + 7T^{2} \)
11 \( 1 + 3.46T + 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 1.73T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 - T + 43T^{2} \)
47 \( 1 + 3.46T + 47T^{2} \)
53 \( 1 - 12T + 53T^{2} \)
59 \( 1 - 3.46T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 8.66T + 67T^{2} \)
71 \( 1 + 10.3T + 71T^{2} \)
73 \( 1 + 1.73T + 73T^{2} \)
79 \( 1 + 11T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 - 6.92T + 89T^{2} \)
97 \( 1 + 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61830362665621724149108319238, −10.09112703417803556791200386879, −9.267897418273464623679307917199, −8.391172421529893030852853557508, −7.24963530321341423501378290668, −5.93064261575568266342607788636, −5.28045701610837857299657547026, −4.61275172251397988724758301190, −2.78409310180320161668009725310, −1.19333478724103673445354913370, 1.19333478724103673445354913370, 2.78409310180320161668009725310, 4.61275172251397988724758301190, 5.28045701610837857299657547026, 5.93064261575568266342607788636, 7.24963530321341423501378290668, 8.391172421529893030852853557508, 9.267897418273464623679307917199, 10.09112703417803556791200386879, 10.61830362665621724149108319238

Graph of the $Z$-function along the critical line