L(s) = 1 | + 2.04·2-s − 3-s + 2.19·4-s − 3.35·5-s − 2.04·6-s − 2.24·7-s + 0.405·8-s + 9-s − 6.87·10-s − 4.93·11-s − 2.19·12-s − 4.60·14-s + 3.35·15-s − 3.56·16-s + 0.911·17-s + 2.04·18-s + 3.80·19-s − 7.37·20-s + 2.24·21-s − 10.1·22-s + 2.02·23-s − 0.405·24-s + 6.26·25-s − 27-s − 4.93·28-s − 3.93·29-s + 6.87·30-s + ⋯ |
L(s) = 1 | + 1.44·2-s − 0.577·3-s + 1.09·4-s − 1.50·5-s − 0.836·6-s − 0.849·7-s + 0.143·8-s + 0.333·9-s − 2.17·10-s − 1.48·11-s − 0.634·12-s − 1.23·14-s + 0.866·15-s − 0.891·16-s + 0.221·17-s + 0.482·18-s + 0.872·19-s − 1.64·20-s + 0.490·21-s − 2.15·22-s + 0.422·23-s − 0.0828·24-s + 1.25·25-s − 0.192·27-s − 0.933·28-s − 0.731·29-s + 1.25·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 2.04T + 2T^{2} \) |
| 5 | \( 1 + 3.35T + 5T^{2} \) |
| 7 | \( 1 + 2.24T + 7T^{2} \) |
| 11 | \( 1 + 4.93T + 11T^{2} \) |
| 17 | \( 1 - 0.911T + 17T^{2} \) |
| 19 | \( 1 - 3.80T + 19T^{2} \) |
| 23 | \( 1 - 2.02T + 23T^{2} \) |
| 29 | \( 1 + 3.93T + 29T^{2} \) |
| 31 | \( 1 - 8.82T + 31T^{2} \) |
| 37 | \( 1 + 8.80T + 37T^{2} \) |
| 41 | \( 1 + 6.93T + 41T^{2} \) |
| 43 | \( 1 + 2.28T + 43T^{2} \) |
| 47 | \( 1 + 3.80T + 47T^{2} \) |
| 53 | \( 1 - 0.542T + 53T^{2} \) |
| 59 | \( 1 - 4.71T + 59T^{2} \) |
| 61 | \( 1 - 3.67T + 61T^{2} \) |
| 67 | \( 1 - 1.52T + 67T^{2} \) |
| 71 | \( 1 + 2.37T + 71T^{2} \) |
| 73 | \( 1 + 7.41T + 73T^{2} \) |
| 79 | \( 1 + 3.74T + 79T^{2} \) |
| 83 | \( 1 + 2.30T + 83T^{2} \) |
| 89 | \( 1 - 10.0T + 89T^{2} \) |
| 97 | \( 1 - 16.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83519912616711516336991805828, −9.882691801179596796962295591839, −8.424268292688031193921047813833, −7.41768819056655327024411483281, −6.63266880715944236957990870622, −5.44364695187002043838865580903, −4.79017613349203602808028306780, −3.65164115354405144094532866704, −2.95144313672453620983700957428, 0,
2.95144313672453620983700957428, 3.65164115354405144094532866704, 4.79017613349203602808028306780, 5.44364695187002043838865580903, 6.63266880715944236957990870622, 7.41768819056655327024411483281, 8.424268292688031193921047813833, 9.882691801179596796962295591839, 10.83519912616711516336991805828