Properties

Label 2-507-1.1-c1-0-10
Degree $2$
Conductor $507$
Sign $1$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s − 3-s + 0.999·4-s − 1.73·6-s + 3.46·7-s − 1.73·8-s + 9-s + 3.46·11-s − 0.999·12-s + 5.99·14-s − 5·16-s + 6·17-s + 1.73·18-s + 3.46·19-s − 3.46·21-s + 5.99·22-s + 1.73·24-s − 5·25-s − 27-s + 3.46·28-s + 6·29-s − 3.46·31-s − 5.19·32-s − 3.46·33-s + 10.3·34-s + 0.999·36-s − 6.92·37-s + ⋯
L(s)  = 1  + 1.22·2-s − 0.577·3-s + 0.499·4-s − 0.707·6-s + 1.30·7-s − 0.612·8-s + 0.333·9-s + 1.04·11-s − 0.288·12-s + 1.60·14-s − 1.25·16-s + 1.45·17-s + 0.408·18-s + 0.794·19-s − 0.755·21-s + 1.27·22-s + 0.353·24-s − 25-s − 0.192·27-s + 0.654·28-s + 1.11·29-s − 0.622·31-s − 0.918·32-s − 0.603·33-s + 1.78·34-s + 0.166·36-s − 1.13·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.425937495\)
\(L(\frac12)\) \(\approx\) \(2.425937495\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
13 \( 1 \)
good2 \( 1 - 1.73T + 2T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 3.46T + 31T^{2} \)
37 \( 1 + 6.92T + 37T^{2} \)
41 \( 1 + 6.92T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 3.46T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 - 3.46T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 3.46T + 83T^{2} \)
89 \( 1 - 6.92T + 89T^{2} \)
97 \( 1 + 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36115687945316413102513683604, −10.23186052604118683807518466314, −9.173280372302837284479603894925, −8.069517973257505027287831482119, −7.01876676244882275910853449372, −5.88092650763199403169733671603, −5.21583610170390546783438457701, −4.35300108571061840677486504793, −3.34537566354701850612787093594, −1.50232947470805817130888796036, 1.50232947470805817130888796036, 3.34537566354701850612787093594, 4.35300108571061840677486504793, 5.21583610170390546783438457701, 5.88092650763199403169733671603, 7.01876676244882275910853449372, 8.069517973257505027287831482119, 9.173280372302837284479603894925, 10.23186052604118683807518466314, 11.36115687945316413102513683604

Graph of the $Z$-function along the critical line