Properties

Label 2-50400-1.1-c1-0-17
Degree $2$
Conductor $50400$
Sign $1$
Analytic cond. $402.446$
Root an. cond. $20.0610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 4·11-s + 2·13-s + 6·17-s − 6·19-s + 2·23-s + 6·29-s − 2·31-s + 8·37-s − 12·41-s + 4·43-s + 8·47-s + 49-s + 2·53-s − 12·59-s − 10·61-s − 4·67-s − 8·71-s + 2·73-s + 4·77-s − 8·79-s + 12·89-s − 2·91-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.20·11-s + 0.554·13-s + 1.45·17-s − 1.37·19-s + 0.417·23-s + 1.11·29-s − 0.359·31-s + 1.31·37-s − 1.87·41-s + 0.609·43-s + 1.16·47-s + 1/7·49-s + 0.274·53-s − 1.56·59-s − 1.28·61-s − 0.488·67-s − 0.949·71-s + 0.234·73-s + 0.455·77-s − 0.900·79-s + 1.27·89-s − 0.209·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50400\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(402.446\)
Root analytic conductor: \(20.0610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 50400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.666052916\)
\(L(\frac12)\) \(\approx\) \(1.666052916\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.54887079298177, −13.89832548715059, −13.49495746952658, −12.95688787331375, −12.49501633493811, −12.10227278789913, −11.40200361905144, −10.74627682856197, −10.34399396251793, −10.09000227904657, −9.217754463004355, −8.787694330804353, −8.142968093692271, −7.731372706252597, −7.168964131592757, −6.404768328436767, −5.954710987580833, −5.447016305988081, −4.689601751801931, −4.229746495214898, −3.274732946537222, −2.975773437939070, −2.184154170314011, −1.331426654487773, −0.4676482437480996, 0.4676482437480996, 1.331426654487773, 2.184154170314011, 2.975773437939070, 3.274732946537222, 4.229746495214898, 4.689601751801931, 5.447016305988081, 5.954710987580833, 6.404768328436767, 7.168964131592757, 7.731372706252597, 8.142968093692271, 8.787694330804353, 9.217754463004355, 10.09000227904657, 10.34399396251793, 10.74627682856197, 11.40200361905144, 12.10227278789913, 12.49501633493811, 12.95688787331375, 13.49495746952658, 13.89832548715059, 14.54887079298177

Graph of the $Z$-function along the critical line