Properties

Label 2-5040-1.1-c1-0-34
Degree $2$
Conductor $5040$
Sign $-1$
Analytic cond. $40.2446$
Root an. cond. $6.34386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 2·11-s − 2·13-s − 2·17-s + 8·19-s − 2·23-s + 25-s + 8·29-s + 8·31-s + 35-s − 6·37-s − 6·41-s − 4·43-s + 4·47-s + 49-s + 2·55-s − 4·59-s − 2·61-s + 2·65-s + 4·67-s + 6·71-s − 6·73-s + 2·77-s − 16·83-s + 2·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 0.603·11-s − 0.554·13-s − 0.485·17-s + 1.83·19-s − 0.417·23-s + 1/5·25-s + 1.48·29-s + 1.43·31-s + 0.169·35-s − 0.986·37-s − 0.937·41-s − 0.609·43-s + 0.583·47-s + 1/7·49-s + 0.269·55-s − 0.520·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s + 0.712·71-s − 0.702·73-s + 0.227·77-s − 1.75·83-s + 0.216·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5040\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(40.2446\)
Root analytic conductor: \(6.34386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.977197141342291494066193235449, −7.07813850315708352882522051302, −6.64524736595163870360159667548, −5.57163436419997422324200354280, −4.96832053464467391533000993474, −4.18131549851569523757033959988, −3.14840468921601203786522654566, −2.63697813714156890613330231745, −1.25300802784258270262242107305, 0, 1.25300802784258270262242107305, 2.63697813714156890613330231745, 3.14840468921601203786522654566, 4.18131549851569523757033959988, 4.96832053464467391533000993474, 5.57163436419997422324200354280, 6.64524736595163870360159667548, 7.07813850315708352882522051302, 7.977197141342291494066193235449

Graph of the $Z$-function along the critical line