Properties

Label 2-504-1.1-c5-0-8
Degree $2$
Conductor $504$
Sign $1$
Analytic cond. $80.8334$
Root an. cond. $8.99074$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·5-s + 49·7-s + 624·11-s − 708·13-s − 934·17-s + 1.85e3·19-s + 1.12e3·23-s − 2.10e3·25-s + 1.17e3·29-s + 2.90e3·31-s − 1.56e3·35-s − 1.24e4·37-s − 2.66e3·41-s − 7.14e3·43-s + 7.46e3·47-s + 2.40e3·49-s + 2.72e4·53-s − 1.99e4·55-s − 2.49e3·59-s − 1.10e4·61-s + 2.26e4·65-s + 3.97e4·67-s + 6.98e4·71-s + 1.64e4·73-s + 3.05e4·77-s + 7.83e4·79-s − 1.09e5·83-s + ⋯
L(s)  = 1  − 0.572·5-s + 0.377·7-s + 1.55·11-s − 1.16·13-s − 0.783·17-s + 1.18·19-s + 0.441·23-s − 0.672·25-s + 0.259·29-s + 0.543·31-s − 0.216·35-s − 1.49·37-s − 0.247·41-s − 0.589·43-s + 0.493·47-s + 1/7·49-s + 1.33·53-s − 0.890·55-s − 0.0931·59-s − 0.381·61-s + 0.665·65-s + 1.08·67-s + 1.64·71-s + 0.361·73-s + 0.587·77-s + 1.41·79-s − 1.74·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(504\)    =    \(2^{3} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(80.8334\)
Root analytic conductor: \(8.99074\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 504,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.953801737\)
\(L(\frac12)\) \(\approx\) \(1.953801737\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p^{2} T \)
good5 \( 1 + 32 T + p^{5} T^{2} \)
11 \( 1 - 624 T + p^{5} T^{2} \)
13 \( 1 + 708 T + p^{5} T^{2} \)
17 \( 1 + 934 T + p^{5} T^{2} \)
19 \( 1 - 1858 T + p^{5} T^{2} \)
23 \( 1 - 1120 T + p^{5} T^{2} \)
29 \( 1 - 1174 T + p^{5} T^{2} \)
31 \( 1 - 2908 T + p^{5} T^{2} \)
37 \( 1 + 12462 T + p^{5} T^{2} \)
41 \( 1 + 2662 T + p^{5} T^{2} \)
43 \( 1 + 7144 T + p^{5} T^{2} \)
47 \( 1 - 7468 T + p^{5} T^{2} \)
53 \( 1 - 27274 T + p^{5} T^{2} \)
59 \( 1 + 2490 T + p^{5} T^{2} \)
61 \( 1 + 11096 T + p^{5} T^{2} \)
67 \( 1 - 39756 T + p^{5} T^{2} \)
71 \( 1 - 69888 T + p^{5} T^{2} \)
73 \( 1 - 16450 T + p^{5} T^{2} \)
79 \( 1 - 78376 T + p^{5} T^{2} \)
83 \( 1 + 109818 T + p^{5} T^{2} \)
89 \( 1 - 56966 T + p^{5} T^{2} \)
97 \( 1 + 115946 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02440519219289023206574267284, −9.235959471566366891246428240311, −8.366020585771334664440492652131, −7.30807815794708318943142528503, −6.67876116197668066964064355277, −5.31419901906406817022227176274, −4.37150364697475188852319536812, −3.40657596135082735799816824954, −1.99074323515603502775507146385, −0.71155608190346149353994044686, 0.71155608190346149353994044686, 1.99074323515603502775507146385, 3.40657596135082735799816824954, 4.37150364697475188852319536812, 5.31419901906406817022227176274, 6.67876116197668066964064355277, 7.30807815794708318943142528503, 8.366020585771334664440492652131, 9.235959471566366891246428240311, 10.02440519219289023206574267284

Graph of the $Z$-function along the critical line