L(s) = 1 | − 32·5-s + 49·7-s + 624·11-s − 708·13-s − 934·17-s + 1.85e3·19-s + 1.12e3·23-s − 2.10e3·25-s + 1.17e3·29-s + 2.90e3·31-s − 1.56e3·35-s − 1.24e4·37-s − 2.66e3·41-s − 7.14e3·43-s + 7.46e3·47-s + 2.40e3·49-s + 2.72e4·53-s − 1.99e4·55-s − 2.49e3·59-s − 1.10e4·61-s + 2.26e4·65-s + 3.97e4·67-s + 6.98e4·71-s + 1.64e4·73-s + 3.05e4·77-s + 7.83e4·79-s − 1.09e5·83-s + ⋯ |
L(s) = 1 | − 0.572·5-s + 0.377·7-s + 1.55·11-s − 1.16·13-s − 0.783·17-s + 1.18·19-s + 0.441·23-s − 0.672·25-s + 0.259·29-s + 0.543·31-s − 0.216·35-s − 1.49·37-s − 0.247·41-s − 0.589·43-s + 0.493·47-s + 1/7·49-s + 1.33·53-s − 0.890·55-s − 0.0931·59-s − 0.381·61-s + 0.665·65-s + 1.08·67-s + 1.64·71-s + 0.361·73-s + 0.587·77-s + 1.41·79-s − 1.74·83-s + ⋯ |
Λ(s)=(=(504s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(504s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.953801737 |
L(21) |
≈ |
1.953801737 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−p2T |
good | 5 | 1+32T+p5T2 |
| 11 | 1−624T+p5T2 |
| 13 | 1+708T+p5T2 |
| 17 | 1+934T+p5T2 |
| 19 | 1−1858T+p5T2 |
| 23 | 1−1120T+p5T2 |
| 29 | 1−1174T+p5T2 |
| 31 | 1−2908T+p5T2 |
| 37 | 1+12462T+p5T2 |
| 41 | 1+2662T+p5T2 |
| 43 | 1+7144T+p5T2 |
| 47 | 1−7468T+p5T2 |
| 53 | 1−27274T+p5T2 |
| 59 | 1+2490T+p5T2 |
| 61 | 1+11096T+p5T2 |
| 67 | 1−39756T+p5T2 |
| 71 | 1−69888T+p5T2 |
| 73 | 1−16450T+p5T2 |
| 79 | 1−78376T+p5T2 |
| 83 | 1+109818T+p5T2 |
| 89 | 1−56966T+p5T2 |
| 97 | 1+115946T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02440519219289023206574267284, −9.235959471566366891246428240311, −8.366020585771334664440492652131, −7.30807815794708318943142528503, −6.67876116197668066964064355277, −5.31419901906406817022227176274, −4.37150364697475188852319536812, −3.40657596135082735799816824954, −1.99074323515603502775507146385, −0.71155608190346149353994044686,
0.71155608190346149353994044686, 1.99074323515603502775507146385, 3.40657596135082735799816824954, 4.37150364697475188852319536812, 5.31419901906406817022227176274, 6.67876116197668066964064355277, 7.30807815794708318943142528503, 8.366020585771334664440492652131, 9.235959471566366891246428240311, 10.02440519219289023206574267284