L(s) = 1 | + 97.5·5-s + 49·7-s − 406.·11-s − 905.·13-s − 359.·17-s + 1.81e3·19-s + 2.16e3·23-s + 6.38e3·25-s + 4.09e3·29-s + 4.45e3·31-s + 4.77e3·35-s + 8.93e3·37-s + 3.41e3·41-s − 8.69e3·43-s − 1.42e4·47-s + 2.40e3·49-s + 1.46e4·53-s − 3.96e4·55-s − 2.13e4·59-s + 5.40e4·61-s − 8.83e4·65-s + 4.49e4·67-s − 5.70e3·71-s + 4.76e4·73-s − 1.99e4·77-s + 5.80e3·79-s − 2.70e4·83-s + ⋯ |
L(s) = 1 | + 1.74·5-s + 0.377·7-s − 1.01·11-s − 1.48·13-s − 0.301·17-s + 1.15·19-s + 0.852·23-s + 2.04·25-s + 0.903·29-s + 0.831·31-s + 0.659·35-s + 1.07·37-s + 0.317·41-s − 0.717·43-s − 0.937·47-s + 0.142·49-s + 0.714·53-s − 1.76·55-s − 0.800·59-s + 1.86·61-s − 2.59·65-s + 1.22·67-s − 0.134·71-s + 1.04·73-s − 0.382·77-s + 0.104·79-s − 0.431·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(3.079509458\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.079509458\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - 49T \) |
good | 5 | \( 1 - 97.5T + 3.12e3T^{2} \) |
| 11 | \( 1 + 406.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 905.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 359.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 1.81e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 2.16e3T + 6.43e6T^{2} \) |
| 29 | \( 1 - 4.09e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 4.45e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 8.93e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 3.41e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 8.69e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.42e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.46e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.13e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 5.40e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 4.49e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 5.70e3T + 1.80e9T^{2} \) |
| 73 | \( 1 - 4.76e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 5.80e3T + 3.07e9T^{2} \) |
| 83 | \( 1 + 2.70e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 9.62e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.01e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.898991370242585629651535132176, −9.591656256696332292364270270137, −8.388355494805211027420834492546, −7.33852326907518346972394024383, −6.38970651874797197063000701809, −5.24261944571308483278222942633, −4.90453838959611915338473952714, −2.84273132491704866433304713472, −2.20794676708162849652633382074, −0.897039847065639093826117081168,
0.897039847065639093826117081168, 2.20794676708162849652633382074, 2.84273132491704866433304713472, 4.90453838959611915338473952714, 5.24261944571308483278222942633, 6.38970651874797197063000701809, 7.33852326907518346972394024383, 8.388355494805211027420834492546, 9.591656256696332292364270270137, 9.898991370242585629651535132176