Properties

Label 2-504-1.1-c5-0-10
Degree $2$
Conductor $504$
Sign $1$
Analytic cond. $80.8334$
Root an. cond. $8.99074$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.7·5-s − 49·7-s − 58.5·11-s + 1.17e3·13-s − 1.49e3·17-s + 498.·19-s + 1.88e3·23-s − 2.90e3·25-s − 1.91e3·29-s + 794.·31-s − 721.·35-s + 2.98e3·37-s − 1.19e4·41-s + 9.82e3·43-s + 1.96e4·47-s + 2.40e3·49-s + 1.98e4·53-s − 862.·55-s − 3.58e4·59-s + 4.99e4·61-s + 1.73e4·65-s + 4.81e4·67-s − 7.71e4·71-s − 5.96e4·73-s + 2.86e3·77-s + 6.07e4·79-s + 4.61e4·83-s + ⋯
L(s)  = 1  + 0.263·5-s − 0.377·7-s − 0.145·11-s + 1.93·13-s − 1.25·17-s + 0.317·19-s + 0.744·23-s − 0.930·25-s − 0.422·29-s + 0.148·31-s − 0.0995·35-s + 0.358·37-s − 1.10·41-s + 0.809·43-s + 1.29·47-s + 0.142·49-s + 0.971·53-s − 0.0384·55-s − 1.34·59-s + 1.71·61-s + 0.509·65-s + 1.31·67-s − 1.81·71-s − 1.31·73-s + 0.0551·77-s + 1.09·79-s + 0.735·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(504\)    =    \(2^{3} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(80.8334\)
Root analytic conductor: \(8.99074\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 504,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.202806442\)
\(L(\frac12)\) \(\approx\) \(2.202806442\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + 49T \)
good5 \( 1 - 14.7T + 3.12e3T^{2} \)
11 \( 1 + 58.5T + 1.61e5T^{2} \)
13 \( 1 - 1.17e3T + 3.71e5T^{2} \)
17 \( 1 + 1.49e3T + 1.41e6T^{2} \)
19 \( 1 - 498.T + 2.47e6T^{2} \)
23 \( 1 - 1.88e3T + 6.43e6T^{2} \)
29 \( 1 + 1.91e3T + 2.05e7T^{2} \)
31 \( 1 - 794.T + 2.86e7T^{2} \)
37 \( 1 - 2.98e3T + 6.93e7T^{2} \)
41 \( 1 + 1.19e4T + 1.15e8T^{2} \)
43 \( 1 - 9.82e3T + 1.47e8T^{2} \)
47 \( 1 - 1.96e4T + 2.29e8T^{2} \)
53 \( 1 - 1.98e4T + 4.18e8T^{2} \)
59 \( 1 + 3.58e4T + 7.14e8T^{2} \)
61 \( 1 - 4.99e4T + 8.44e8T^{2} \)
67 \( 1 - 4.81e4T + 1.35e9T^{2} \)
71 \( 1 + 7.71e4T + 1.80e9T^{2} \)
73 \( 1 + 5.96e4T + 2.07e9T^{2} \)
79 \( 1 - 6.07e4T + 3.07e9T^{2} \)
83 \( 1 - 4.61e4T + 3.93e9T^{2} \)
89 \( 1 + 7.86e4T + 5.58e9T^{2} \)
97 \( 1 + 4.35e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18521691518459980932659029664, −9.088181542718233345962461923164, −8.560199287286132480420542892610, −7.33472597959012779974304650735, −6.34927608121682947950674116515, −5.64415260502164400458414142314, −4.29002479174490420073573869110, −3.33560127601446738634115037361, −2.02311823499215566510609945106, −0.75524498179294752771609968315, 0.75524498179294752771609968315, 2.02311823499215566510609945106, 3.33560127601446738634115037361, 4.29002479174490420073573869110, 5.64415260502164400458414142314, 6.34927608121682947950674116515, 7.33472597959012779974304650735, 8.560199287286132480420542892610, 9.088181542718233345962461923164, 10.18521691518459980932659029664

Graph of the $Z$-function along the critical line