L(s) = 1 | − 2-s + 1.61·3-s + 4-s − 1.61·6-s − 0.618·7-s − 8-s + 1.61·9-s + 1.61·12-s + 0.618·14-s + 16-s − 1.61·18-s − 1.00·21-s − 0.618·23-s − 1.61·24-s + 27-s − 0.618·28-s − 1.61·29-s − 32-s + 1.61·36-s − 1.61·41-s + 1.00·42-s + 1.61·43-s + 0.618·46-s + 1.61·47-s + 1.61·48-s − 0.618·49-s − 54-s + ⋯ |
L(s) = 1 | − 2-s + 1.61·3-s + 4-s − 1.61·6-s − 0.618·7-s − 8-s + 1.61·9-s + 1.61·12-s + 0.618·14-s + 16-s − 1.61·18-s − 1.00·21-s − 0.618·23-s − 1.61·24-s + 27-s − 0.618·28-s − 1.61·29-s − 32-s + 1.61·36-s − 1.61·41-s + 1.00·42-s + 1.61·43-s + 0.618·46-s + 1.61·47-s + 1.61·48-s − 0.618·49-s − 54-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 500 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 500 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8974930687\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8974930687\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 1.61T + T^{2} \) |
| 7 | \( 1 + 0.618T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 0.618T + T^{2} \) |
| 29 | \( 1 + 1.61T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + 1.61T + T^{2} \) |
| 43 | \( 1 - 1.61T + T^{2} \) |
| 47 | \( 1 - 1.61T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 0.618T + T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + 0.618T + T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79009569541155256020998785666, −9.892053578804294027684938270086, −9.269216966860930361686480550770, −8.615762592868283300193694511914, −7.72457624057647123432192311638, −7.07167899836745740199562808627, −5.85287572927177250505680003377, −3.90338335502008625780572165396, −2.95455403281289193232370231576, −1.90018583643744816330930253607,
1.90018583643744816330930253607, 2.95455403281289193232370231576, 3.90338335502008625780572165396, 5.85287572927177250505680003377, 7.07167899836745740199562808627, 7.72457624057647123432192311638, 8.615762592868283300193694511914, 9.269216966860930361686480550770, 9.892053578804294027684938270086, 10.79009569541155256020998785666