L(s) = 1 | − 4.09e3i·2-s − 9.79e4i·3-s − 1.67e7·4-s − 4.01e8·6-s − 4.08e10i·7-s + 6.87e10i·8-s + 8.37e11·9-s − 1.45e13·11-s + 1.64e12i·12-s − 8.78e13i·13-s − 1.67e14·14-s + 2.81e14·16-s − 2.65e15i·17-s − 3.43e15i·18-s + 1.39e16·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.106i·3-s − 0.5·4-s − 0.0752·6-s − 1.11i·7-s + 0.353i·8-s + 0.988·9-s − 1.39·11-s + 0.0532i·12-s − 1.04i·13-s − 0.789·14-s + 0.250·16-s − 1.10i·17-s − 0.699i·18-s + 1.45·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.894744156\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.894744156\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4.09e3iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 9.79e4iT - 8.47e11T^{2} \) |
| 7 | \( 1 + 4.08e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 1.45e13T + 1.08e26T^{2} \) |
| 13 | \( 1 + 8.78e13iT - 7.05e27T^{2} \) |
| 17 | \( 1 + 2.65e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 - 1.39e16T + 9.30e31T^{2} \) |
| 23 | \( 1 + 8.58e16iT - 1.10e34T^{2} \) |
| 29 | \( 1 + 2.08e18T + 3.63e36T^{2} \) |
| 31 | \( 1 - 2.66e18T + 1.92e37T^{2} \) |
| 37 | \( 1 + 5.13e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 - 2.33e20T + 2.08e40T^{2} \) |
| 43 | \( 1 - 4.01e19iT - 6.86e40T^{2} \) |
| 47 | \( 1 - 2.79e20iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 4.25e20iT - 1.27e43T^{2} \) |
| 59 | \( 1 - 8.33e21T + 1.86e44T^{2} \) |
| 61 | \( 1 - 2.42e22T + 4.29e44T^{2} \) |
| 67 | \( 1 + 1.24e23iT - 4.48e45T^{2} \) |
| 71 | \( 1 + 9.30e22T + 1.91e46T^{2} \) |
| 73 | \( 1 + 4.04e22iT - 3.82e46T^{2} \) |
| 79 | \( 1 - 8.05e23T + 2.75e47T^{2} \) |
| 83 | \( 1 + 8.98e21iT - 9.48e47T^{2} \) |
| 89 | \( 1 + 3.55e24T + 5.42e48T^{2} \) |
| 97 | \( 1 + 8.66e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32247826475391347518613669076, −9.539517750479977680472315560784, −7.80631201524660919398038165262, −7.29687387727108583570474859522, −5.47219486260854562763706443049, −4.50878727406498061928764319524, −3.34887640491460949794846702058, −2.34856068818202039546226208422, −0.900776489494010525656916243899, −0.43595442275936098591851901586,
1.25973068833346783059988508179, 2.43454575719537163880212140940, 3.83540640228395727319647498258, 5.05635649389781934395349442503, 5.84700779839146239820219516712, 7.14274003614780968625282130884, 8.074120073125140872709118209134, 9.241095860485609669822128988065, 10.10886845509996706379191077376, 11.56910619768844341456790390458