L(s) = 1 | − 4.09e3i·2-s + 1.75e6i·3-s − 1.67e7·4-s + 7.20e9·6-s + 3.04e10i·7-s + 6.87e10i·8-s − 2.24e12·9-s + 2.58e12·11-s − 2.94e13i·12-s − 9.57e13i·13-s + 1.24e14·14-s + 2.81e14·16-s + 1.64e15i·17-s + 9.18e15i·18-s − 4.95e15·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.90i·3-s − 0.5·4-s + 1.35·6-s + 0.830i·7-s + 0.353i·8-s − 2.64·9-s + 0.248·11-s − 0.954i·12-s − 1.13i·13-s + 0.587·14-s + 0.250·16-s + 0.685i·17-s + 1.87i·18-s − 0.513·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.502436214\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.502436214\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4.09e3iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 1.75e6iT - 8.47e11T^{2} \) |
| 7 | \( 1 - 3.04e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 - 2.58e12T + 1.08e26T^{2} \) |
| 13 | \( 1 + 9.57e13iT - 7.05e27T^{2} \) |
| 17 | \( 1 - 1.64e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 + 4.95e15T + 9.30e31T^{2} \) |
| 23 | \( 1 + 1.07e16iT - 1.10e34T^{2} \) |
| 29 | \( 1 - 1.36e18T + 3.63e36T^{2} \) |
| 31 | \( 1 + 4.41e18T + 1.92e37T^{2} \) |
| 37 | \( 1 + 1.01e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 - 1.58e20T + 2.08e40T^{2} \) |
| 43 | \( 1 - 1.83e20iT - 6.86e40T^{2} \) |
| 47 | \( 1 + 1.40e21iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 1.99e21iT - 1.27e43T^{2} \) |
| 59 | \( 1 - 4.16e21T + 1.86e44T^{2} \) |
| 61 | \( 1 - 3.42e22T + 4.29e44T^{2} \) |
| 67 | \( 1 + 8.67e22iT - 4.48e45T^{2} \) |
| 71 | \( 1 + 5.13e22T + 1.91e46T^{2} \) |
| 73 | \( 1 - 3.49e22iT - 3.82e46T^{2} \) |
| 79 | \( 1 + 2.91e23T + 2.75e47T^{2} \) |
| 83 | \( 1 + 1.64e24iT - 9.48e47T^{2} \) |
| 89 | \( 1 + 8.74e23T + 5.42e48T^{2} \) |
| 97 | \( 1 + 1.00e25iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71675471511308375567266006236, −10.04133770163744425313673609264, −9.023929604079708775958183051652, −8.313185665227651505057453113787, −5.90116215447072855422268688174, −5.13278555700569194572785574665, −4.05822314050636428806953043342, −3.23213051626936932778772431462, −2.25918726864773320779923178011, −0.42616984809084989254387528289,
0.64103250256461753962114471473, 1.43544321184850937272855687455, 2.59864172260909496266024169875, 4.16300452274081975773967046190, 5.67549939391788367499252574855, 6.76821926088595283169627886823, 7.16856956588130376106236261021, 8.193066857369770071121484767403, 9.249830944209383730876032893081, 11.07246334963077642666033925190