Properties

Label 2-50-5.4-c25-0-19
Degree $2$
Conductor $50$
Sign $0.894 - 0.447i$
Analytic cond. $197.998$
Root an. cond. $14.0711$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.09e3i·2-s + 1.75e6i·3-s − 1.67e7·4-s + 7.20e9·6-s + 3.04e10i·7-s + 6.87e10i·8-s − 2.24e12·9-s + 2.58e12·11-s − 2.94e13i·12-s − 9.57e13i·13-s + 1.24e14·14-s + 2.81e14·16-s + 1.64e15i·17-s + 9.18e15i·18-s − 4.95e15·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 1.90i·3-s − 0.5·4-s + 1.35·6-s + 0.830i·7-s + 0.353i·8-s − 2.64·9-s + 0.248·11-s − 0.954i·12-s − 1.13i·13-s + 0.587·14-s + 0.250·16-s + 0.685i·17-s + 1.87i·18-s − 0.513·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(197.998\)
Root analytic conductor: \(14.0711\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: $\chi_{50} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :25/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(13)\) \(\approx\) \(1.502436214\)
\(L(\frac12)\) \(\approx\) \(1.502436214\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4.09e3iT \)
5 \( 1 \)
good3 \( 1 - 1.75e6iT - 8.47e11T^{2} \)
7 \( 1 - 3.04e10iT - 1.34e21T^{2} \)
11 \( 1 - 2.58e12T + 1.08e26T^{2} \)
13 \( 1 + 9.57e13iT - 7.05e27T^{2} \)
17 \( 1 - 1.64e15iT - 5.77e30T^{2} \)
19 \( 1 + 4.95e15T + 9.30e31T^{2} \)
23 \( 1 + 1.07e16iT - 1.10e34T^{2} \)
29 \( 1 - 1.36e18T + 3.63e36T^{2} \)
31 \( 1 + 4.41e18T + 1.92e37T^{2} \)
37 \( 1 + 1.01e19iT - 1.60e39T^{2} \)
41 \( 1 - 1.58e20T + 2.08e40T^{2} \)
43 \( 1 - 1.83e20iT - 6.86e40T^{2} \)
47 \( 1 + 1.40e21iT - 6.34e41T^{2} \)
53 \( 1 + 1.99e21iT - 1.27e43T^{2} \)
59 \( 1 - 4.16e21T + 1.86e44T^{2} \)
61 \( 1 - 3.42e22T + 4.29e44T^{2} \)
67 \( 1 + 8.67e22iT - 4.48e45T^{2} \)
71 \( 1 + 5.13e22T + 1.91e46T^{2} \)
73 \( 1 - 3.49e22iT - 3.82e46T^{2} \)
79 \( 1 + 2.91e23T + 2.75e47T^{2} \)
83 \( 1 + 1.64e24iT - 9.48e47T^{2} \)
89 \( 1 + 8.74e23T + 5.42e48T^{2} \)
97 \( 1 + 1.00e25iT - 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71675471511308375567266006236, −10.04133770163744425313673609264, −9.023929604079708775958183051652, −8.313185665227651505057453113787, −5.90116215447072855422268688174, −5.13278555700569194572785574665, −4.05822314050636428806953043342, −3.23213051626936932778772431462, −2.25918726864773320779923178011, −0.42616984809084989254387528289, 0.64103250256461753962114471473, 1.43544321184850937272855687455, 2.59864172260909496266024169875, 4.16300452274081975773967046190, 5.67549939391788367499252574855, 6.76821926088595283169627886823, 7.16856956588130376106236261021, 8.193066857369770071121484767403, 9.249830944209383730876032893081, 11.07246334963077642666033925190

Graph of the $Z$-function along the critical line