L(s) = 1 | − 4.09e3i·2-s + 1.62e5i·3-s − 1.67e7·4-s + 6.67e8·6-s + 1.76e10i·7-s + 6.87e10i·8-s + 8.20e11·9-s − 1.12e13·11-s − 2.73e12i·12-s + 4.24e12i·13-s + 7.20e13·14-s + 2.81e14·16-s + 1.13e15i·17-s − 3.36e15i·18-s − 2.98e15·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.176i·3-s − 0.5·4-s + 0.125·6-s + 0.480i·7-s + 0.353i·8-s + 0.968·9-s − 1.07·11-s − 0.0884i·12-s + 0.0505i·13-s + 0.339·14-s + 0.250·16-s + 0.473i·17-s − 0.684i·18-s − 0.309·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.695584857\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.695584857\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4.09e3iT \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 1.62e5iT - 8.47e11T^{2} \) |
| 7 | \( 1 - 1.76e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 1.12e13T + 1.08e26T^{2} \) |
| 13 | \( 1 - 4.24e12iT - 7.05e27T^{2} \) |
| 17 | \( 1 - 1.13e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 + 2.98e15T + 9.30e31T^{2} \) |
| 23 | \( 1 + 1.22e17iT - 1.10e34T^{2} \) |
| 29 | \( 1 - 2.12e18T + 3.63e36T^{2} \) |
| 31 | \( 1 - 4.22e18T + 1.92e37T^{2} \) |
| 37 | \( 1 + 2.41e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 + 1.61e20T + 2.08e40T^{2} \) |
| 43 | \( 1 + 3.11e20iT - 6.86e40T^{2} \) |
| 47 | \( 1 - 1.22e21iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 4.78e20iT - 1.27e43T^{2} \) |
| 59 | \( 1 + 1.21e22T + 1.86e44T^{2} \) |
| 61 | \( 1 + 2.03e22T + 4.29e44T^{2} \) |
| 67 | \( 1 + 6.15e22iT - 4.48e45T^{2} \) |
| 71 | \( 1 - 1.34e23T + 1.91e46T^{2} \) |
| 73 | \( 1 - 2.23e23iT - 3.82e46T^{2} \) |
| 79 | \( 1 + 3.82e23T + 2.75e47T^{2} \) |
| 83 | \( 1 + 7.71e23iT - 9.48e47T^{2} \) |
| 89 | \( 1 - 8.40e23T + 5.42e48T^{2} \) |
| 97 | \( 1 - 6.19e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69153528165787971105627668688, −10.15417686533940605923419673761, −8.887756914342835971782710552495, −7.86878182171569829002187791916, −6.43271720711638530179298423396, −5.06925420225393419449581586950, −4.20696234952478921706195446948, −2.89091712956766744060535347024, −1.99708276503993726520539609957, −0.78418962322735280677430921680,
0.40398329640337315461319682551, 1.49527397258355509241562272706, 2.97633327446984490235084131450, 4.31385626968626866628725584132, 5.20602737546580880107925699312, 6.54124816270118636361090111646, 7.42729367330955195762598628777, 8.276248078726072387486559006916, 9.726858456026688443134010276292, 10.50689703299630834892066667024