L(s) = 1 | + (2 + 2i)2-s + (−9 + 9i)3-s + 8i·4-s − 36·6-s + (−29 − 29i)7-s + (−16 + 16i)8-s − 81i·9-s − 118·11-s + (−72 − 72i)12-s + (−69 + 69i)13-s − 116i·14-s − 64·16-s + (271 + 271i)17-s + (162 − 162i)18-s + 280i·19-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (−1 + i)3-s + 0.5i·4-s − 6-s + (−0.591 − 0.591i)7-s + (−0.250 + 0.250i)8-s − i·9-s − 0.975·11-s + (−0.5 − 0.5i)12-s + (−0.408 + 0.408i)13-s − 0.591i·14-s − 0.250·16-s + (0.937 + 0.937i)17-s + (0.5 − 0.5i)18-s + 0.775i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.0877587 - 0.753721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0877587 - 0.753721i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 2i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (9 - 9i)T - 81iT^{2} \) |
| 7 | \( 1 + (29 + 29i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 + 118T + 1.46e4T^{2} \) |
| 13 | \( 1 + (69 - 69i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (-271 - 271i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 - 280iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (269 - 269i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 - 680iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 202T + 9.23e5T^{2} \) |
| 37 | \( 1 + (-651 - 651i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 1.68e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (1.08e3 - 1.08e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (1.26e3 + 1.26e3i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (-611 + 611i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 - 1.16e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 5.59e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (-751 - 751i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 - 6.44e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (-2.95e3 + 2.95e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 - 1.05e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-6.23e3 + 6.23e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 1.44e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-7.31e3 - 7.31e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.62206721800081959092510969411, −14.48515281833405262838710004047, −13.11448581170423635391398609710, −11.98225094237428945169719951543, −10.61952159184843810480449755343, −9.811978040297879966635525788444, −7.81838317986705921462637489712, −6.20778940332173655034141268111, −5.07994717672298426671836276290, −3.71305015523928919960072780484,
0.42754194622724493681379385876, 2.63813215005198984489545750794, 5.17076854249274166905869460748, 6.21084730516439869112954004768, 7.62344010833921794109869465659, 9.663982871311451058281074713992, 11.01367151529108703032981729047, 12.14191744793533284270707247701, 12.71346444490093053490863374752, 13.75659294600431034796105602860