L(s) = 1 | + (−1 − i)2-s + (3 − 3i)3-s + 2i·4-s − 6·6-s + (−3 − 3i)7-s + (2 − 2i)8-s − 9i·9-s + 12·11-s + (6 + 6i)12-s + (−12 + 12i)13-s + 6i·14-s − 4·16-s + (12 + 12i)17-s + (−9 + 9i)18-s + 20i·19-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (1 − i)3-s + 0.5i·4-s − 6-s + (−0.428 − 0.428i)7-s + (0.250 − 0.250i)8-s − i·9-s + 1.09·11-s + (0.5 + 0.5i)12-s + (−0.923 + 0.923i)13-s + 0.428i·14-s − 0.250·16-s + (0.705 + 0.705i)17-s + (−0.5 + 0.5i)18-s + 1.05i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.900646 - 0.712788i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.900646 - 0.712788i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-3 + 3i)T - 9iT^{2} \) |
| 7 | \( 1 + (3 + 3i)T + 49iT^{2} \) |
| 11 | \( 1 - 12T + 121T^{2} \) |
| 13 | \( 1 + (12 - 12i)T - 169iT^{2} \) |
| 17 | \( 1 + (-12 - 12i)T + 289iT^{2} \) |
| 19 | \( 1 - 20iT - 361T^{2} \) |
| 23 | \( 1 + (-3 + 3i)T - 529iT^{2} \) |
| 29 | \( 1 + 30iT - 841T^{2} \) |
| 31 | \( 1 + 8T + 961T^{2} \) |
| 37 | \( 1 + (48 + 48i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 48T + 1.68e3T^{2} \) |
| 43 | \( 1 + (27 - 27i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-27 - 27i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (12 - 12i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 60iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 32T + 3.72e3T^{2} \) |
| 67 | \( 1 + (3 + 3i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 48T + 5.04e3T^{2} \) |
| 73 | \( 1 + (12 - 12i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 40iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-93 + 93i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 30iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-12 - 12i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.64661998336004243774261294396, −13.92663883420789206712279376832, −12.69076772712617704935233109361, −11.86245207177202507846598702559, −10.08745848297075308675851995583, −8.987771474630974893119655693889, −7.77591223426661159754654466015, −6.69598080613287623425340706945, −3.67919922508282971486074977192, −1.80025676486837353071318586815,
3.15730387915536506833046377401, 5.08200756604778021156898137371, 7.02697502479373260278127599454, 8.597359020093749534253980411125, 9.411306383803152646954322466506, 10.29476229216911077361313726089, 12.04540692977967871954181129679, 13.75151866857549705537000314050, 14.82993393552372711007767059544, 15.39375256660699070522923994612