Properties

Label 2-50-1.1-c3-0-1
Degree $2$
Conductor $50$
Sign $1$
Analytic cond. $2.95009$
Root an. cond. $1.71758$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 8·3-s + 4·4-s − 16·6-s + 4·7-s − 8·8-s + 37·9-s + 12·11-s + 32·12-s + 58·13-s − 8·14-s + 16·16-s − 66·17-s − 74·18-s − 100·19-s + 32·21-s − 24·22-s − 132·23-s − 64·24-s − 116·26-s + 80·27-s + 16·28-s − 90·29-s + 152·31-s − 32·32-s + 96·33-s + 132·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.53·3-s + 1/2·4-s − 1.08·6-s + 0.215·7-s − 0.353·8-s + 1.37·9-s + 0.328·11-s + 0.769·12-s + 1.23·13-s − 0.152·14-s + 1/4·16-s − 0.941·17-s − 0.968·18-s − 1.20·19-s + 0.332·21-s − 0.232·22-s − 1.19·23-s − 0.544·24-s − 0.874·26-s + 0.570·27-s + 0.107·28-s − 0.576·29-s + 0.880·31-s − 0.176·32-s + 0.506·33-s + 0.665·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.95009\)
Root analytic conductor: \(1.71758\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.578565699\)
\(L(\frac12)\) \(\approx\) \(1.578565699\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 + 100 T + p^{3} T^{2} \)
23 \( 1 + 132 T + p^{3} T^{2} \)
29 \( 1 + 90 T + p^{3} T^{2} \)
31 \( 1 - 152 T + p^{3} T^{2} \)
37 \( 1 - 34 T + p^{3} T^{2} \)
41 \( 1 + 438 T + p^{3} T^{2} \)
43 \( 1 + 32 T + p^{3} T^{2} \)
47 \( 1 - 204 T + p^{3} T^{2} \)
53 \( 1 + 222 T + p^{3} T^{2} \)
59 \( 1 - 420 T + p^{3} T^{2} \)
61 \( 1 - 902 T + p^{3} T^{2} \)
67 \( 1 - 1024 T + p^{3} T^{2} \)
71 \( 1 - 432 T + p^{3} T^{2} \)
73 \( 1 + 362 T + p^{3} T^{2} \)
79 \( 1 + 160 T + p^{3} T^{2} \)
83 \( 1 + 72 T + p^{3} T^{2} \)
89 \( 1 - 810 T + p^{3} T^{2} \)
97 \( 1 + 1106 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.10527647695033303834171950661, −14.03666354063861339240147928179, −13.03471815163085802663623650894, −11.33448589653740591437742921768, −9.975023505642710053505058933239, −8.716638835363535290756995180948, −8.192325937919748535755327852198, −6.57235269598188037993838794931, −3.84058546664873519083326793824, −2.04250149809618508378100381796, 2.04250149809618508378100381796, 3.84058546664873519083326793824, 6.57235269598188037993838794931, 8.192325937919748535755327852198, 8.716638835363535290756995180948, 9.975023505642710053505058933239, 11.33448589653740591437742921768, 13.03471815163085802663623650894, 14.03666354063861339240147928179, 15.10527647695033303834171950661

Graph of the $Z$-function along the critical line